Phage integrases for the construction and manipulation of transgenic mammals

被引:61
作者
Roger P Hollis
Stephanie M Stoll
Christopher R Sclimenti
Jennifer Lin
Yanru Chen-Tsai
Michele P Calos
机构
[1] Department of Genetics, Stanford Univ. School of Medicine, Stanford
[2] Children's Hospital of Los Angeles, Dept. of Research Immunology/BMT, Los Angeles, CA 90027
[3] Univ. of California San Francisco, Department of Surgery, San Fracisco, CA 94122-0522
[4] Poetic Genetics LLC, Burlingame, CA 94010
[5] Stanford Transgenic Res. Facility, Stanford Univ. School of Medicine, Stanford
关键词
Chromosomal Deletion; Donor Plasmid; attB Site; attP Site; Phage Integrases;
D O I
10.1186/1477-7827-1-79
中图分类号
学科分类号
摘要
Phage integrases catalyze site-specific, unidirectional recombination between two short att recognition sites. Recombination results in integration when the att sites are present on two different DNA molecules and deletion or inversion when the att sites are on the same molecule. Here we demonstrate the ability of the φC31 integrase to integrate DNA into endogenous sequences in the mouse genome following microinjection of donor plasmid and integrase mRNA into mouse single-cell embryos. Transgenic early embryos and a mid-gestation mouse are reported. We also demonstrate the ability of the φC31, R4, and TP901-1 phage integrases to recombine two introduced att sites on the same chromosome in human cells, resulting in deletion of the intervening material. We compare the frequencies of mammalian chromosomal deletion catalyzed by these three integrases in different chromosomal locations. The results reviewed here introduce these bacteriophage integrases as tools for site-specific modification of the genome for the creation and manipulation of transgenic mammals. © 2003 Hollis et al; licensee BioMed Central Ltd.
引用
收藏
页数:11
相关论文
共 44 条
[31]  
Lakso M., Sauer B., Mosinger Jr. B., Lee E.J., Manning R.W., Yu S.H., Mulder K.L., Westphal H., Targeted oncogene activation by site-specific recombination in transgenic mice, Proc. Natl. Acad. Sci. U S A, 89, pp. 6232-6236, (1992)
[32]  
Araki K., Araki M., Miyazaki J., Vassalli P., Site-specific recombination of a transgene in fertilized eggs by transient expression of Cre recombinase, Proc. Natl. Acad. Sci. U S A, 92, pp. 160-164, (1995)
[33]  
de Wit T., Drabek D., Grosveld F., Microinjection of cre recombinase RNA induces site-specific recombination of a transgene in mouse oocytes, Nucleic Acids Res., 26, pp. 676-678, (1998)
[34]  
Zhang Y., Riesterer C., Ayrall A.M., Sablitzky F., Littlewood T.D., Reth M., Inducible site-directed recombination in mouse embryonic stem cells, Nucleic Acids Res., 24, pp. 543-548, (1996)
[35]  
Utomo A.R., Nikitin A.Y., Lee W.H., Temporal, spatial, and cell type-specific control of Cre-mediated DNA recombination in transgenic mice, Nat. Biotechnol., 17, pp. 1091-1096, (1999)
[36]  
Vasioukhin V., Degenstein L., Wise B., Fuchs E., The magical touch: Genome targeting in epidermal stem cells induced by tamoxifen application to mouse skin, Proc. Natl. Acad. Sci. U S A, 96, pp. 8551-8556, (1999)
[37]  
Tronche F., Casanova E., Turiault M., Sahly I., Kellendonk C., When reverse genetics meets physiology: The use of site-specific recombinases in mice, FEBS Lett., 529, pp. 116-121, (2002)
[38]  
Rodriguez C.I., Buchholz F., Galloway J., Sequerra R., Kasper J., Ayala R., Stewart A.F., Dymecki S.M., High-efficiency deleter mice show that FLPe is an alternative to Cre-loxP, Nat. Genet., 25, pp. 139-140, (2000)
[39]  
Schaft J., Ashery-Padan R., van der Hoeven F., Gruss P., Stewart A.F., Efficient FLP recombination in mouse ES cells and oocytes, Genesis, 31, pp. 6-10, (2001)
[40]  
Meyers E.N., Lewandoski M., Martin G.R., An Fgf8 mutant allelic series generated by Cre- and Flp-mediated recombination, Nat. Genet., 18, pp. 136-141, (1998)