GEOMETRIC MECHANISM FOR ANTIMONOTONICITY IN SCALAR MAPS WITH 2 CRITICAL-POINTS

被引:27
作者
DAWSON, SP
GREBOGI, C
KOCAK, H
机构
[1] UNIV MARYLAND,DEPT MATH,COLL PK,MD 20742
[2] UNIV MIAMI,DEPT MATH & COMP SCI,CORAL GABLES,FL 33124
来源
PHYSICAL REVIEW E | 1993年 / 48卷 / 03期
关键词
D O I
10.1103/PhysRevE.48.1676
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Concurrent creation and destruction of periodic orbits-antimonotonicity-for one-parameter scalar maps with at least two critical points are investigated. It is observed that if, for a parameter value, two critical points lie in an interval that is a chaotic attractor, then, generically, as the parameter is varied through any neighborhood of such a value, periodic orbits should be created and destroyed infinitely often. A general mechanism for this complicated dynamics for one-dimensional multimodal maps is proposed similar to the one of contact-making and contact-breaking homoclinic tangencies in two-dimensional dissipative maps. This subtle phenomenon is demonstrated in a detailed numerical study of a specific one-dimensional cubic map.
引用
收藏
页码:1676 / 1682
页数:7
相关论文
共 27 条
[1]   EXPERIMENTAL-EVIDENCE OF SUB-HARMONIC BIFURCATIONS, MULTISTABILITY, AND TURBULENCE IN A Q-SWITCHED GAS-LASER [J].
ARECCHI, FT ;
MEUCCI, R ;
PUCCIONI, G ;
TREDICCE, J .
PHYSICAL REVIEW LETTERS, 1982, 49 (17) :1217-1220
[2]   ITERATIVE PROPERTIES OF A ONE-DIMENSIONAL QUARTIC MAP - CRITICAL LINES AND TRICRITICAL BEHAVIOR [J].
CHANG, SJ ;
WORTIS, M ;
WRIGHT, JA .
PHYSICAL REVIEW A, 1981, 24 (05) :2669-2684
[3]   A NEW TYPE OF PERIOD-DOUBLING BIFURCATIONS IN ONE-DIMENSIONAL TRANSFORMATIONS WITH 2 EXTREMA [J].
COSTE, J ;
PEYRAUD, N .
PHYSICA D, 1982, 5 (2-3) :415-420
[4]  
Dawson S. P., 1991, Chaos, Solitons and Fractals, V1, P137, DOI 10.1016/0960-0779(91)90004-S
[5]   ANTIMONOTONICITY - INEVITABLE REVERSALS OF PERIOD-DOUBLING CASCADES [J].
DAWSON, SP ;
GREBOGI, C ;
YORKE, JA ;
KAN, I ;
KOCAK, H .
PHYSICS LETTERS A, 1992, 162 (03) :249-254
[6]  
DEVANEY R, 1986, INTRO CHAOTIC DYNAMI, P121
[7]   QUANTITATIVE UNIVERSALITY FOR A CLASS OF NON-LINEAR TRANSFORMATIONS [J].
FEIGENBAUM, MJ .
JOURNAL OF STATISTICAL PHYSICS, 1978, 19 (01) :25-52
[8]   ANALYSIS OF FLOW HYSTERESIS BY A ONE-DIMENSIONAL MAP [J].
FRASER, S ;
KAPRAL, R .
PHYSICAL REVIEW A, 1982, 25 (06) :3223-3233
[9]   TRANSITION TO CHAOTIC BEHAVIOR VIA A REPRODUCIBLE SEQUENCE OF PERIOD-DOUBLING BIFURCATIONS [J].
GIGLIO, M ;
MUSAZZI, S ;
PERINI, U .
PHYSICAL REVIEW LETTERS, 1981, 47 (04) :243-246
[10]   FINE-STRUCTURE OF PHASE LOCKING [J].
GLASS, L ;
PEREZ, R .
PHYSICAL REVIEW LETTERS, 1982, 48 (26) :1772-1775