GEOMETRIC MECHANISM FOR ANTIMONOTONICITY IN SCALAR MAPS WITH 2 CRITICAL-POINTS

被引:27
作者
DAWSON, SP
GREBOGI, C
KOCAK, H
机构
[1] UNIV MARYLAND,DEPT MATH,COLL PK,MD 20742
[2] UNIV MIAMI,DEPT MATH & COMP SCI,CORAL GABLES,FL 33124
来源
PHYSICAL REVIEW E | 1993年 / 48卷 / 03期
关键词
D O I
10.1103/PhysRevE.48.1676
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Concurrent creation and destruction of periodic orbits-antimonotonicity-for one-parameter scalar maps with at least two critical points are investigated. It is observed that if, for a parameter value, two critical points lie in an interval that is a chaotic attractor, then, generically, as the parameter is varied through any neighborhood of such a value, periodic orbits should be created and destroyed infinitely often. A general mechanism for this complicated dynamics for one-dimensional multimodal maps is proposed similar to the one of contact-making and contact-breaking homoclinic tangencies in two-dimensional dissipative maps. This subtle phenomenon is demonstrated in a detailed numerical study of a specific one-dimensional cubic map.
引用
收藏
页码:1676 / 1682
页数:7
相关论文
共 27 条
[21]   SUPERSTRUCTURE IN THE BIFURCATION SET OF THE DUFFING EQUATION X+DX+X+X3=FCOS(W)T) [J].
PARLITZ, U ;
LAUTERBORN, W .
PHYSICS LETTERS A, 1985, 107 (08) :351-355
[22]   PERIOD-DOUBLING CASCADES AND DEVILS STAIRCASES OF THE DRIVEN VANDERPOL OSCILLATOR [J].
PARLITZ, U ;
LAUTERBORN, W .
PHYSICAL REVIEW A, 1987, 36 (03) :1428-1434
[23]  
RINGLAND J, 1990, PHYS REV A, V41, P1223
[24]   COMPARISON OF BIFURCATION STRUCTURES OF DRIVEN DISSIPATIVE NONLINEAR OSCILLATORS [J].
SCHEFFCZYK, C ;
PARLITZ, U ;
KURZ, T ;
KNOP, W ;
LAUTERBORN, W .
PHYSICAL REVIEW A, 1991, 43 (12) :6495-6502
[25]  
SWINNEY HL, 1986, PHYS REV LETT, V56, P999
[26]  
[No title captured]
[27]  
[No title captured]