THE diminishing reserves of petroleum oil have focused attention on the possibility of making more efficient use of natural gas, reserves of which are at present considerably under-utilized. Methane is commonly used as a fuel, but it is also the starting material for the production, by steam reforming, of synthesis gas (carbon monoxide and hydrogen), which acts as a feedstock for the synthesis of ammonia and methanol, and can be converted to higher hydrocarbons, alcohols and aldehydes by Fischer-Tropsch catalysis1. The partial oxidation of methane to synthesis gas is also an established industrial process2 but operates at very high temperatures (> 1,200 °C). Here we report that this reaction can be carried out at temperatures of only ∼775 °C by using lanthanide ruthenium oxide catalysts. © 1990 Nature Publishing Group.