RENORMALIZATION-GROUP ANALYSIS OF A NOISY KURAMOTO-SIVASHINSKY EQUATION
被引:49
作者:
CUERNO, R
论文数: 0引用数: 0
h-index: 0
机构:
BOSTON UNIV,DEPT PHYS,BOSTON,MA 02215BOSTON UNIV,DEPT PHYS,BOSTON,MA 02215
CUERNO, R
[1
]
LAURITSEN, KB
论文数: 0引用数: 0
h-index: 0
机构:
BOSTON UNIV,DEPT PHYS,BOSTON,MA 02215BOSTON UNIV,DEPT PHYS,BOSTON,MA 02215
LAURITSEN, KB
[1
]
机构:
[1] BOSTON UNIV,DEPT PHYS,BOSTON,MA 02215
来源:
PHYSICAL REVIEW E
|
1995年
/
52卷
/
05期
关键词:
D O I:
10.1103/PhysRevE.52.4853
中图分类号:
O35 [流体力学];
O53 [等离子体物理学];
学科分类号:
070204 ;
080103 ;
080704 ;
摘要:
We have analyzed the Kuramoto-Sivashinsky equation with a stochastic noise term through a dynamic renormalization-group calculation. For a system in which the lattice spacing is smaller than the typical wavelength of the linear instability occurring in the system, the large distance and long-time behavior of this equation is the same as for the Kardar-Parisi-Zhang equation in one and two spatial dimensions. For the d = 2 case the agreement is only qualitative. On the other hand, when coarse graining on larger scales the asymptotic how depends on the initial values of the parameters.