BANACH-TARSKI THEOREM AND CANTORIAN MICRO SPACE-TIME

被引:25
作者
ELNASCHIE, MS
机构
[1] DAMPT, Cambridge
关键词
D O I
10.1016/0960-0779(95)00052-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Starting from the cosmic initial singularity scenario and general relativity, Banach-Tarski theorem together with the theorem of Mauldin-Williams leads to the conclusion that micro space should resemble a realization of a random quasi-transfinite four-dimensional Cantorian manifold (d(c)((4))))with a Golden Mean Hausdorff dimension at the core (d(c)((0)))) where d(c)((0)) = \[d(c)((0))\d(c)((0))]\ and [d(c)((0))\ = 0 - id(c)((0))). In the imaginary phase space the dimensionality (the number of components) is eight and is related to SU(3) and quarks.
引用
收藏
页码:1503 / 1508
页数:6
相关论文
共 28 条
[1]  
[Anonymous], 1973, GRAVITATION
[2]  
Bondi Hermann, 1964, RELATIVITY COMMON SE
[3]   A DYNAMIC SYSTEM MODEL FOR INTERFERENCE EFFECTS AND THE 2-SLIT EXPERIMENT OF QUANTUM PHYSICS [J].
BOYARSKY, A ;
GORA, P .
PHYSICS LETTERS A, 1992, 168 (02) :103-112
[4]  
DVIES P, 1989, NEW PHYSICS
[5]   Multi-dimensional cantor sets in classical and quantum mechanics [J].
El Naschie, M.S. .
Chaos, solitons and fractals, 1992, 2 (02) :211-220
[6]  
ELASCHIE MS, 1994, IL NUOVO CIMENTO B, V4, P177
[7]   ON THE NATURE OF COMPLEX TIME, DIFFUSION AND THE 2-SLIT EXPERIMENT [J].
ELNASCHIE, MS .
CHAOS SOLITONS & FRACTALS, 1995, 5 (06) :1031-1032
[8]   DIMENSIONS AND CANTOR SPECTRA [J].
ELNASCHIE, MS .
CHAOS SOLITONS & FRACTALS, 1994, 4 (11) :2121-2132
[9]   A NOTE ON QUANTUM-MECHANICS, DIFFUSIONAL INTERFERENCE AND INFORMIONS [J].
ELNASCHIE, MS .
CHAOS SOLITONS & FRACTALS, 1995, 5 (05) :881-884
[10]   ON CERTAIN EMPTY CANTOR SETS AND THEIR DIMENSIONS [J].
ELNASCHIE, MS .
CHAOS SOLITONS & FRACTALS, 1994, 4 (02) :293-296