BANACH-TARSKI THEOREM AND CANTORIAN MICRO SPACE-TIME

被引:25
作者
ELNASCHIE, MS
机构
[1] DAMPT, Cambridge
关键词
D O I
10.1016/0960-0779(95)00052-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Starting from the cosmic initial singularity scenario and general relativity, Banach-Tarski theorem together with the theorem of Mauldin-Williams leads to the conclusion that micro space should resemble a realization of a random quasi-transfinite four-dimensional Cantorian manifold (d(c)((4))))with a Golden Mean Hausdorff dimension at the core (d(c)((0)))) where d(c)((0)) = \[d(c)((0))\d(c)((0))]\ and [d(c)((0))\ = 0 - id(c)((0))). In the imaginary phase space the dimensionality (the number of components) is eight and is related to SU(3) and quarks.
引用
收藏
页码:1503 / 1508
页数:6
相关论文
共 28 条
[21]   QUANTUM INTERFERENCE FROM CHARGE CONSERVATION [J].
ORD, GN .
PHYSICS LETTERS A, 1993, 173 (4-5) :343-346
[22]   CLASSICAL ANALOG OF QUANTUM PHASE [J].
ORD, GN .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1992, 31 (07) :1177-1195
[23]  
Penrose R., 1994, SHADOWS MIND
[24]  
Prigogine I., 1993, TIME CHAOS QUANTUM
[25]  
STEWART I, 1992, PROBLEMS MATH
[26]  
Svozil K., 1993, RANDOMNESS UNDECIDAB
[27]  
Zeldovich Ya. B., 1990, THE ALMIGHTY CHANCE
[28]  
[No title captured]