BANACH-TARSKI THEOREM AND CANTORIAN MICRO SPACE-TIME

被引:25
作者
ELNASCHIE, MS
机构
[1] DAMPT, Cambridge
关键词
D O I
10.1016/0960-0779(95)00052-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Starting from the cosmic initial singularity scenario and general relativity, Banach-Tarski theorem together with the theorem of Mauldin-Williams leads to the conclusion that micro space should resemble a realization of a random quasi-transfinite four-dimensional Cantorian manifold (d(c)((4))))with a Golden Mean Hausdorff dimension at the core (d(c)((0)))) where d(c)((0)) = \[d(c)((0))\d(c)((0))]\ and [d(c)((0))\ = 0 - id(c)((0))). In the imaginary phase space the dimensionality (the number of components) is eight and is related to SU(3) and quarks.
引用
收藏
页码:1503 / 1508
页数:6
相关论文
共 28 条
[11]   ON THE INITIAL SINGULARITY AND THE BANACH-TARSKI THEOREM [J].
ELNASCHIE, MS .
CHAOS SOLITONS & FRACTALS, 1995, 5 (07) :1391-1392
[12]   ORBITS STABILITY AND DIMENSIONAL CRITICALITY OF CANTOR SETS [J].
ELNASCHIE, MS .
APPLIED MATHEMATICS LETTERS, 1994, 7 (02) :91-94
[13]  
ELNASCHIE MS, 1995, QUANTUM MECHANICS DI
[14]  
FLORET K, 1981, MEASURE INTEGRATION
[15]  
GIBB G, 1977, PHYS REV D, V15, P107
[16]  
HALLIWELL JJ, 1991, SCI AM DEC, P28
[17]  
Kapitaniak T., 1993, ATTRACTORS QUASIPERI
[18]   RANDOM RECURSIVE CONSTRUCTIONS - ASYMPTOTIC GEOMETRIC AND TOPOLOGICAL PROPERTIES [J].
MAULDIN, RD ;
WILLIAMS, SC .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 295 (01) :325-346
[19]  
MEISSNER W, IN PRESS CHAOS SOLIT
[20]  
Nottale L, 1993, FRACTAL SPACE TIME M