LONG-TERM PLANETARY INTEGRATION WITH INDIVIDUAL TIME STEPS

被引:81
作者
SAHA, P [1 ]
TREMAINE, S [1 ]
机构
[1] AUSTRALIAN NATL UNIV,MT STROMLO & SIDING SPRING OBSERV,CANBERRA,ACT 0200,AUSTRALIA
关键词
D O I
10.1086/117210
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
we describe an algorithm for long-term planetary orbit integrations, including the dominant post-Newtonian effects, that employs individual time steps for each planet. The algorithm is symplectic and exhibits short-term errors that are O(epsilon Omega(2) tau(2)) where tau is the time step, Omega is a typical orbital frequency, and epsilon<<1 is a typical planetary mass in solar units. By a special starting procedure long-term errors over an integration interval T can be reduced to O(epsilon(2) Omega(3) tau(2)T). A sample 0.8 Myr integration of the nine planets illustrates that Pluto can have a time step more than 100 times Mercury's, without dominating the positional error. Our algorithm is applicable to other N-body systems.
引用
收藏
页码:1962 / 1969
页数:8
相关论文
共 21 条
[11]  
Quinlan G.D., 1990, AJ, V100, P1964
[12]   ROUNDOFF ERROR IN LONG-TERM PLANETARY ORBIT INTEGRATIONS [J].
QUINN, T ;
TREMAINE, S .
ASTRONOMICAL JOURNAL, 1990, 99 (03) :1016-1023
[13]   A 3 MILLION YEAR INTEGRATION OF THE EARTHS ORBIT [J].
QUINN, TR ;
TREMAINE, S ;
DUNCAN, M .
ASTRONOMICAL JOURNAL, 1991, 101 (06) :2287-2305
[14]   SYMPLECTIC INTEGRATORS FOR SOLAR-SYSTEM DYNAMICS [J].
SAHA, P ;
TREMAINE, S .
ASTRONOMICAL JOURNAL, 1992, 104 (04) :1633-1640
[15]  
SKEEL RD, 1994, PREPRINT
[16]   CHAOTIC EVOLUTION OF THE SOLAR-SYSTEM [J].
SUSSMAN, GJ ;
WISDOM, J .
SCIENCE, 1992, 257 (5066) :56-62
[17]   SYMPLECTIC MAPS FOR THE N-BODY PROBLEM [J].
WISDOM, J ;
HOLMAN, M .
ASTRONOMICAL JOURNAL, 1991, 102 (04) :1528-1538
[18]   SYMPLECTIC MAPS FOR THE N-BODY PROBLEM - STABILITY ANALYSIS [J].
WISDOM, J ;
HOLMAN, M .
ASTRONOMICAL JOURNAL, 1992, 104 (05) :2022-2029
[19]  
WISDOM J, 1994, INTEGRATION ALGORITH
[20]   CONSTRUCTION OF HIGHER-ORDER SYMPLECTIC INTEGRATORS [J].
YOSHIDA, H .
PHYSICS LETTERS A, 1990, 150 (5-7) :262-268