Maternal infection is a cause of spontaneous abortion and preterm labor in humans, but the pathophysiology is unclear. We hypothesized that eicosanoids play an important role in infection-driven pregnancy loss. To investigate this hypothesis, we administered lipopolysaccharide (LPS) to pregnant C3H/HeN mice and found that LPS administration caused fetal death in a dose-dependent fashion. Pretreatment with indomethacin significantly decreased the proportion of fetal death from 83% to < 25% in mice injected with 10 mu g of LPS. Also, decidual explants from LPS-treated mice produced significantly more inflammatory ei. cosanoids, including prostaglandins E(2), and F-2 alpha and thromboxane B-2, than controls. We investigated the regulatory mechanisms responsible for increased decidual prostanoid production in response to LPS. Western and Northern blots demonstrated that decidual protein and mRNA levels of a recently recognized highly inducible form of cyclooxygenase, COX-2, were substantially increased in mice treated with LPS. Induction of COX-2 was rapid: mRNA was detected 30 min after LPS injection. In contrast, another form of cyclooxygenase, COX-1, was only minimally induced in response to LPS. Our data indicate that LPS induces decidual prostanoid production via increased COX-2 expression. Since LPS-mediated fetal death is markedly diminished by pretreatment with indomethacin, COX-2-mediated eicosanoid production is likely a key pathophysiologic event in LPS-mediated fetal death.