SYNAPTOPHYSIN - A COMMON CONSTITUENT OF PRESUMPTIVE SECRETORY MICROVESICLES IN THE MAMMALIAN PINEALOCYTE - A STUDY OF RAT AND GERBIL PINEAL GLANDS

被引:67
作者
REDECKER, P
BARGSTEN, G
机构
[1] Department of Anatomy, Hannover Medical School, Hannover
关键词
SYNAPTOPHYSIN P38; SYNAPSIN; SEMITHIN SECTIONS; IMMUNOGOLD STAINING; IMAGE ANALYSIS;
D O I
10.1002/jnr.490340109
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Recent studies have established that pinealocytes of the mammalian pineal gland contain marker molecules of neuroendocrine cells or paraneurons like the synaptic vesicle-associated protein synaptophysin (p38). The objective of this study was to identify the subcellular synaptophysin-positive compartment and to characterize in detail the intracellular distribution of this protein in rat and gerbil pinealocytes. An analysis of serial semithin sections of plastic-embedded pineals immunostained for synaptophysin, including computer-assisted optical density measurements of synaptophysin immunoreactivities, demonstrated unequivocally that synaptophysin was highly concentrated in dilated process terminals of the pinealocytes. More than 75% of these process terminals were found to border or lie within the pericapillary space. At the ultrastructural level, they contained accumulations of small clear vesicles of variable size that turned out to be the site of synaptophysin immunoreactivity when immunogold staining was performed. In addition, microvesicles surrounding synaptic ribbons were also immunolabeled. Hence, the pinealocyte is the first neuroendocrine cell type that has now been shown to concentrate synaptophysin-positive microvesicles in perivascular process endings. This observation lends strong support to the hypothesis that small clear vesicles in neuroendocrine cells in general, and in pinealocytes in particular, serve secretory functions. The quantitative analysis of completely sectioned process endings revealed that the microvesicles outnumber by far the amount of dense core vesicles and therefore cannot arise by endocytosis of dense core vesicle membranes. Thus, small synaptic-like vesicles probably constitute an independent secretory pathway of the paraneuronal pinealocytes. In the present study, we could also establish the absence of immunoreactivity for synapsin I (belonging to a family of neuron-specific nerve terminal phosphoproteins) from pinealocytes. Synapsin I immunoreactivity was only detectable in intrapineal nerve terminals and varicosities. Taken together, the immunostaining patterns of the pineal gland obtained with antibodies directed against synaptic vesicle-associated proteins render the mammalian pinealocyte a very special type of neuroendocrine cell or paraneuron rather than a ''classic'' neuron.
引用
收藏
页码:79 / 96
页数:18
相关论文
共 85 条
[1]   CHARACTERIZATION, BY SIZE, DENSITY, OSMOTIC FRAGILITY, AND IMMUNOAFFINITY, OF ACETYLCHOLINE-CONTAINING AND VASOACTIVE INTESTINAL POLYPEPTIDE-CONTAINING STORAGE PARTICLES FROM MYENTERIC NEURONS OF THE GUINEA-PIG [J].
AGOSTON, DV ;
WHITTAKER, VP .
JOURNAL OF NEUROCHEMISTRY, 1989, 52 (05) :1474-1480
[2]  
ARSTILA AU, 1967, NEUROENDOCRINOLOGY, VS 2, P7
[3]  
BARGMANN W, 1943, HDB MIKROSKOPISCHEN, V4, P309
[4]   AN ENHANCED METHOD FOR POSTEMBEDDING IMMUNOCYTOCHEMICAL STAINING WHICH PRESERVES CELL-MEMBRANES [J].
BERRYMAN, MA ;
RODEWALD, RD .
JOURNAL OF HISTOCHEMISTRY & CYTOCHEMISTRY, 1990, 38 (02) :159-170
[5]   SYNAPTOTAGMIN - A CALCIUM SENSOR ON THE SYNAPTIC VESICLE SURFACE [J].
BROSE, N ;
PETRENKO, AG ;
SUDHOF, TC ;
JAHN, R .
SCIENCE, 1992, 256 (5059) :1021-1025
[6]   COLOCALIZATION OF SYNAPTOPHYSIN WITH TRANSFERRIN RECEPTORS - IMPLICATIONS FOR SYNAPTIC VESICLE BIOGENESIS [J].
CAMERON, PL ;
SUDHOF, TC ;
JAHN, R ;
DECAMILLI, P .
JOURNAL OF CELL BIOLOGY, 1991, 115 (01) :151-164
[7]   MUTUAL RELATIONSHIPS BETWEEN CHROMOGRANIN-A AND CHROMOGRANIN-B AND GASTRIN IN INDIVIDUAL GASTRIN CELLS [J].
CETIN, Y ;
BARGSTEN, G ;
GRUBE, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (07) :2912-2916
[8]  
Collin J-P., 1971, P79
[9]   SORTING DURING TRANSPORT TO THE SURFACE OF PC12 CELLS - DIVERGENCE OF SYNAPTIC VESICLE AND SECRETORY GRANULE PROTEINS [J].
CUTLER, DF ;
CRAMER, LP .
JOURNAL OF CELL BIOLOGY, 1990, 110 (03) :721-730
[10]  
DECAMILLI P, 1987, ANN NY ACAD SCI, V493, P461