DIFFERENTIAL-CALCULUS ON ISOQ(N), QUANTUM POINCARE ALGEBRA AND Q-GRAVITY

被引:43
作者
CASTELLANI, L [1 ]
机构
[1] IST NAZL FIS NUCL, DIPARTIMENTO FIS TEOR, I-10125 TURIN, ITALY
关键词
D O I
10.1007/BF02099276
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a general method to deform the inhomogeneous algebras of the B-n, C-n, D-n type, and find the corresponding bicovariant differential calculus. The method is based on a projection from B-n+1, C-n+1, D-n+1. For example we obtain the (bicovariant) inhomogeneous q-algebra ISOq(N) as a consistent projection of the (bicovariant) q-algebra SOq(N + 2). This projection works for particular multiparametric deformations of SO(N + 2), the so-called ''minimal'' deformations. The case of ISOq(4) is studied in detail: a real form corresponding to a Lorentz signature exists only for one of the minimal deformations, depending on one parameter q. The quantum Poincare Lie algebra is given explicitly: it has 10 generators (no dilatations) and contains the classical Lorentz algebra. Only the commutation relations involving the momenta depend on q. Finally, we discuss a q-deformation of gravity based on the ''gauging'' of this q-Poincare' algebra: the lagrangian generalizes the usual Einstein-Cartan lagrangian.
引用
收藏
页码:383 / 404
页数:22
相关论文
共 84 条
[1]  
[Anonymous], 1985, SOVIET MATH DOKL
[2]   BICOVARIANT DIFFERENTIAL GEOMETRY OF THE QUANTUM GROUP GLQ(3) [J].
ASCHIERI, P ;
CASTELLANI, L .
PHYSICS LETTERS B, 1992, 293 (3-4) :299-308
[3]   AN INTRODUCTION TO NONCOMMUTATIVE DIFFERENTIAL GEOMETRY ON QUANTUM GROUPS [J].
ASCHIERI, P ;
CASTELLANI, L .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1993, 8 (10) :1667-1706
[4]  
ASCHIERI P, UCLA93TE25 PREPR
[5]  
ASCHIERI P, DFTT994
[6]  
ASCHIERI P, DFTT4494
[7]  
BERNARD D, 1990, PROG THEOR PHYS SUPP, P49, DOI 10.1143/PTPS.102.49
[8]   A REMARK ON QUASI-TRIANGULAR QUANTUM LIE-ALGEBRAS [J].
BERNARD, D .
PHYSICS LETTERS B, 1991, 260 (3-4) :389-393
[9]   BICOVARIANT DIFFERENTIAL-CALCULUS ON QUANTUM GROUPS SUQ(N) AND SOQ(N) [J].
CAROWWATAMURA, U ;
SCHLIEKER, M ;
WATAMURA, S ;
WEICH, W .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 142 (03) :605-641
[10]   GROUP-GEOMETRIC METHODS IN SUPERGRAVITY AND SUPERSTRING THEORIES [J].
CASTELLANI, L .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1992, 7 (08) :1583-1625