COMMENTS ON THE PRESYMPLECTIC FORMALISM AND THE THEORY OF REGULAR LAGRANGIANS WITH CONSTRAINTS

被引:11
作者
CARINENA, JF
RANADA, MF
机构
[1] Dept. de Fisica Teorica, Zaragoza Univ.
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1995年 / 28卷 / 03期
关键词
D O I
10.1088/0305-4470/28/3/006
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Lagrangian formalism for systems with constraints is developed using a singular Lagrangian defined in the extended tangent bundle T(Q x R). The dynamics defined by the new extended Lagrangian, that incorporates the constraints, is studied using the formalism of the presymplectic geometry. A comparative study with other geometric approaches is presented.
引用
收藏
页码:L91 / L97
页数:7
相关论文
共 16 条
[1]   SYMPLECTIC ANALYSIS OF A DIRAC CONSTRAINED THEORY [J].
BARCELOSNETO, J ;
BRAGA, NRF .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (07) :3497-3503
[2]   FADDEEV-JACKIW QUANTIZATION AND CONSTRAINTS [J].
BARCELOSNETO, J ;
WOTZASEK, C .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1992, 7 (20) :4981-5003
[3]  
Cantrijn F., 1986, Journal of Geometry and Physics, V3, P353, DOI 10.1016/0393-0440(86)90014-8
[4]   LAGRANGIAN SYSTEMS WITH CONSTRAINTS - A GEOMETRIC APPROACH TO THE METHOD OF LAGRANGE MULTIPLIERS [J].
CARINENA, JF ;
RANADA, MF .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (06) :1335-1351
[5]   GEOMETRIC-THEORY OF THE EQUIVALENCE OF LAGRANGIANS FOR CONSTRAINED SYSTEMS [J].
CARINENA, JF ;
IBORT, LA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (17) :3335-3341
[6]   THEORY OF SINGULAR LAGRANGIANS [J].
CARINENA, JF .
FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 1990, 38 (09) :641-679
[7]   GEOMETRIC LAGRANGIAN APPROACH TO 1ST-ORDER SYSTEMS AND APPLICATIONS [J].
CARINENA, JF ;
LOPEZ, C ;
RANADA, MF .
JOURNAL OF MATHEMATICAL PHYSICS, 1988, 29 (05) :1134-1142
[8]  
Gotay M J., 1980, ANN LINSTITUT HENRI, V32, P1
[9]  
GOTAY MJ, 1979, ANN I H POINCARE A, V30, P129
[10]   PRESYMPLECTIC MANIFOLDS AND DIRAC-BERGMANN THEORY OF CONSTRAINTS [J].
GOTAY, MJ ;
NESTER, JM ;
HINDS, G .
JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (11) :2388-2399