THE SHARP LIPSCHITZ-CONSTANTS FOR FEASIBLE AND OPTIMAL-SOLUTIONS OF A PERTURBED LINEAR PROGRAM

被引:52
作者
LI, W
机构
[1] Department of Mathematics, Statistics Old Dominion University Norfolk, VA
关键词
D O I
10.1016/0024-3795(93)90125-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to derive the sharp Lipschitz constants for the feasible solutions and optimal solutions of a linear program with respect to right-hand-side perturbations. The Lipschitz constants are given in terms of pseudoinverses of submatrices of the matrices involved and are proven to be sharp.
引用
收藏
页码:15 / 40
页数:26
相关论文
共 18 条
[1]   THE DISTANCE TO A POLYHEDRON [J].
BERGTHALLER, C ;
SINGER, I .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1992, 169 :111-129
[2]   SENSITIVITY THEOREMS IN INTEGER LINEAR-PROGRAMMING [J].
COOK, W ;
GERARDS, AMH ;
SCHRIJVER, A ;
TARDOS, E .
MATHEMATICAL PROGRAMMING, 1986, 34 (03) :251-264
[3]  
Dunford N. J., 1988, LINEAR OPERATORS
[4]  
Gal T., 1979, POSTOPTIMAL ANAL PAR
[5]   THE RELAXATION METHOD FOR SOLVING SYSTEMS OF LINEAR INEQUALITIES [J].
GOFFIN, JL .
MATHEMATICS OF OPERATIONS RESEARCH, 1980, 5 (03) :388-414
[6]   ON APPROXIMATE SOLUTIONS OF SYSTEMS OF LINEAR INEQUALITIES [J].
HOFFMAN, AJ .
JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, 1952, 49 (04) :263-265
[7]   ON THE CONVERGENCE PROPERTIES OF HILDRETH QUADRATIC-PROGRAMMING ALGORITHM [J].
IUSEM, AN ;
DEPIERRO, AR .
MATHEMATICAL PROGRAMMING, 1990, 47 (01) :37-51
[8]  
KLATTE D, 1987, PARAMETRIC OPTIMIZAT, V35, P229
[9]  
LI W, 1991, IN PRESS SIAM J CONT
[10]   ON THE CONVERGENCE OF THE COORDINATE DESCENT METHOD FOR CONVEX DIFFERENTIABLE MINIMIZATION [J].
LUO, ZQ ;
TSENG, P .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1992, 72 (01) :7-35