STRONG-CONVERGENCE OF EXPECTED-PROJECTION METHODS IN HILBERT-SPACES

被引:24
作者
BUTNARIU, D
FLAM, SD
机构
[1] UNIV BERGEN, DEPT ECON, N-5007 BERGEN, NORWAY
[2] UNIV HAIFA, DEPT MATH & COMP SCI, IL-31905 HAIFA, ISRAEL
关键词
D O I
10.1080/01630569508816635
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Projection methods are iterative algorithms for computing common points of convex sets. They proceed via successive or simultaneous projections onto the given sets. Expected-projection methods, as defined in this work, generalize the simultaneous projection methods. We prove under quite mild conditions, that expected-projection methods in Hilbert spaces converge strongly to almost common points of infinite families of convex sets provided that such points exist. Relying on this result we show how expected-projection methods can be used to solve significant problems of applied mathematics.
引用
收藏
页码:601 / 636
页数:36
相关论文
共 49 条
[1]   THE RELAXATION METHOD FOR LINEAR INEQUALITIES [J].
AGMON, S .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1954, 6 (03) :382-392
[2]   BLOCK-ITERATIVE PROJECTION METHODS FOR PARALLEL COMPUTATION OF SOLUTIONS TO CONVEX FEASIBILITY PROBLEMS [J].
AHARONI, R ;
CENSOR, Y .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1989, 120 :165-180
[3]  
Aubin J.-P., 2009, SET-VALUED ANAL, DOI 10.1007/978-0-8176-4848-0
[4]  
Aubin JP, 1984, DIFFERENTIAL INCLUSI, DOI [10.1007/978-3-642-69512-4, DOI 10.1007/978-3-642-69512-4]
[5]  
Auslender A, 1976, OPTIMISATION METHODE
[6]  
BREGMAN LM, 1965, DOKL AKAD NAUK SSSR+, V162, P487
[7]   ON THE BEHAVIOR OF A BLOCK-ITERATIVE PROJECTION METHOD FOR SOLVING CONVEX FEASIBILITY PROBLEMS [J].
BUTNARIU, D ;
CENSOR, Y .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1990, 34 (1-2) :79-94
[8]  
BUTNARIU D, 1992, J COMPUT OPT APPL, P307
[9]  
BUTNARIU D, 1995, IN PRESS J COMPUT AP
[10]  
Castaing C., 1977, LECT NOTES MATH