STRONG-CONVERGENCE OF EXPECTED-PROJECTION METHODS IN HILBERT-SPACES

被引:24
作者
BUTNARIU, D
FLAM, SD
机构
[1] UNIV BERGEN, DEPT ECON, N-5007 BERGEN, NORWAY
[2] UNIV HAIFA, DEPT MATH & COMP SCI, IL-31905 HAIFA, ISRAEL
关键词
D O I
10.1080/01630569508816635
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Projection methods are iterative algorithms for computing common points of convex sets. They proceed via successive or simultaneous projections onto the given sets. Expected-projection methods, as defined in this work, generalize the simultaneous projection methods. We prove under quite mild conditions, that expected-projection methods in Hilbert spaces converge strongly to almost common points of infinite families of convex sets provided that such points exist. Relying on this result we show how expected-projection methods can be used to solve significant problems of applied mathematics.
引用
收藏
页码:601 / 636
页数:36
相关论文
共 49 条
[41]  
SHORE JE, 1984, SIAM AMS P, V14, P139
[42]  
SMITH KT, 1984, SIAM AMS P, V14, P139
[43]   ON THE CONVERGENCE OF THE PRODUCTS OF FIRMLY NONEXPANSIVE MAPPINGS [J].
Tseng, Paul .
SIAM JOURNAL ON OPTIMIZATION, 1992, 2 (03) :425-434
[44]  
VONNEUMANN J, 1949, ANN MATH, V50, P401
[45]  
WIENER N, 1953, COMMENTARII MATH, V29, P97
[46]  
YEH SJ, 1991, OPT COMPUT PROCESS, V1, P47
[47]  
Youla D C, 1982, IEEE Trans Med Imaging, V1, P81, DOI 10.1109/TMI.1982.4307555
[48]   GENERALIZED IMAGE-RESTORATION BY METHOD OF ALTERNATING ORTHOGONAL PROJECTIONS [J].
YOULA, DC .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1978, 25 (09) :694-702
[49]  
[No title captured]