STRONG-CONVERGENCE OF EXPECTED-PROJECTION METHODS IN HILBERT-SPACES

被引:24
作者
BUTNARIU, D
FLAM, SD
机构
[1] UNIV BERGEN, DEPT ECON, N-5007 BERGEN, NORWAY
[2] UNIV HAIFA, DEPT MATH & COMP SCI, IL-31905 HAIFA, ISRAEL
关键词
D O I
10.1080/01630569508816635
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Projection methods are iterative algorithms for computing common points of convex sets. They proceed via successive or simultaneous projections onto the given sets. Expected-projection methods, as defined in this work, generalize the simultaneous projection methods. We prove under quite mild conditions, that expected-projection methods in Hilbert spaces converge strongly to almost common points of infinite families of convex sets provided that such points exist. Relying on this result we show how expected-projection methods can be used to solve significant problems of applied mathematics.
引用
收藏
页码:601 / 636
页数:36
相关论文
共 49 条
[31]  
Mikusinski J., 1978, THE BOCHNER INTEGRAL, DOI [10.1007/978-3-0348-5567-9, DOI 10.1007/978-3-0348-5567-9]
[32]   CONVERGENCE OF CONVEX SETS AND OF SOLUTIONS OF VARIATIONAL INEQUALITIES [J].
MOSCO, U .
ADVANCES IN MATHEMATICS, 1969, 3 (04) :510-&
[33]  
MOTZKIN TS, 1954, CAN J MATH, V6, P393, DOI 10.4153/CJM-1954-038-x
[34]  
NAKANO H, 1953, JAPANESE SOC PROMOTO
[35]  
NISHED MZ, 1981, LECT NOTES MED INFOR, V18, P160
[37]   DECOMPOSITION THROUGH FORMALIZATION IN A PRODUCT SPACE [J].
PIERRA, G .
MATHEMATICAL PROGRAMMING, 1984, 28 (01) :96-115
[38]  
ROCKAFELLAR R. T., 1976, LECT NOTES MATH, V543, P157
[39]  
Sezan M. I., 1987, IMAGE RECOVERY THEOR, P415
[40]  
Shor, 1985, MINIMIZATION METHODS