NUMERICAL STABILITY OF FINITE-DIFFERENCE ALGORITHMS FOR ELECTROCHEMICAL KINETIC SIMULATIONS - MATRIX STABILITY ANALYSIS OF THE CLASSIC EXPLICIT, FULLY IMPLICIT AND CRANK-NICOLSON METHODS AND TYPICAL PROBLEMS INVOLVING MIXED BOUNDARY-CONDITIONS

被引:17
作者
BIENIASZ, LK
OSTERBY, O
BRITZ, D
机构
[1] AARHUS UNIV,INST KEMISK,DK-8000 AARHUS C,DENMARK
[2] AARHUS UNIV,INST DATOLOG,DK-8000 AARHUS C,DENMARK
来源
COMPUTERS & CHEMISTRY | 1995年 / 19卷 / 02期
关键词
D O I
10.1016/0097-8485(94)00054-I
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The stepwise numerical stability of the classic explicit, fully implicit and Crank-Nicolson finite difference discretizations of example diffusional initial boundary value problems from electrochemical kinetics has been investigated using the matrix method of stability analysis. Special attention has been paid to the effect of the discretization of the mixed, linear boundary condition with time-dependent coefficients on stability, assuming the two-point forward-difference approximations for the gradient at the left boundary (electrode). Under accepted assumptions one obtains the usual stability criteria for the classic explicit and fully implicit methods. The Crank-Nicolson method turns out to be only conditionally stable in contrast to the current thought regarding this method.
引用
收藏
页码:121 / 136
页数:16
相关论文
共 51 条
[21]   STABILITY AND CONVERGENCE OF FINITE-DIFFERENCE METHODS FOR SYSTEMS OF NON-LINEAR REACTION-DIFFUSION EQUATIONS [J].
HOFF, D .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (06) :1161-1177
[22]   ON INSTABILITY OF CRANK NICHOLSON FORMULA UNDER DERIVATIVE BOUNDARY CONDITIONS [J].
KEAST, P ;
MITCHELL, AR .
COMPUTER JOURNAL, 1966, 9 (01) :110-&
[23]  
KEAST P, 1967, COMPUT J, V10, P119
[24]   A LINEAR SWEEP VOLTAMMETRY THEORY FOR IRREVERSIBLE ELECTRODE-REACTIONS WITH AN ORDER OF ONE OR HIGHER .1. MATHEMATICAL FORMULATION [J].
KOHLER, H ;
PIRON, DL ;
BELANGER, G .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1987, 134 (01) :120-125
[25]   *UBER EINE METHODE ZUR LOSUNG DER WARMELEITUNGSGLEICHUNG [J].
LAASONEN, P .
ACTA MATHEMATICA, 1949, 81 (03) :309-317
[26]  
Lapidus L, 1982, NUMERICAL SOLUTION P
[27]   EXTRAPOLATION OF 1ST ORDER METHODS FOR PARABOLIC PARTIAL-DIFFERENTIAL EQUATIONS .1. [J].
LAWSON, JD ;
MORRIS, JL .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (06) :1212-1224
[28]  
MITCHELL A, 1985, FINITE DIFFERENCE ME
[29]   ALGORITHM FOR GENERALIZED MATRIX EIGENVALUE PROBLEMS [J].
MOLER, CB ;
STEWART, GW .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1973, 10 (02) :241-256
[30]  
OBRIEN GG, 1951, J MATH PHYS CAMB, V29, P223