ONLINE POLYNOMIAL TRAJECTORIES FOR ROBOT MANIPULATORS

被引:31
作者
CHAND, S [1 ]
DOTY, KL [1 ]
机构
[1] UNIV FLORIDA,DEPT ELECT ENGN,GAINESVILLE,FL 32611
关键词
MATERIALS HANDLING - Manipulators - MATHEMATICAL TECHNIQUES - Interpolation;
D O I
10.1177/027836498500400204
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Robot motion is commonly specified as a Cartesian trajectory of its end-effector. For executing the end-effector trajectory on-line, a look-ahead of a few points on the trajectory is used to generate the joint trajectories. This paper describes the construction of on-line cubic spline joint trajectories for a limited-point look-ahead on a specified end-effector trajectory, not necessarily Cartesian. An analytical derivation for the ideal number of look-ahead points on the end-effector trajectory for cubic spline interpolation is given. Experimental and simulation results of the on-line spline interpolation schemes show improved end-effector path tracking and smooth motion for a wide range of sampling rates on the effector trajectory.
引用
收藏
页码:38 / 48
页数:11
相关论文
共 16 条
[1]  
Ahlberg J. H., 1967, The Theory of Splines and Their Applications
[2]  
BOLLINGER J, 1979, ANN CIRP, V28, P391
[3]  
CLENSHAW CW, 1978, J I MATH APPL, V22, P109
[4]  
de Boor C., 1978, PRACTICAL GUIDE SPLI
[6]  
FINKEL RA, 1976, THESIS STANFORD U
[7]   WRIST-PARTITIONED, INVERSE KINEMATIC ACCELERATIONS AND MANIPULATOR DYNAMICS [J].
HOLLERBACH, JM ;
SAHAR, G .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 1983, 2 (04) :61-76
[8]  
JOHNSON R, 1977, NUMERICAL ANAL
[9]  
LEWIS RA, 1974, TM33679 CALTECH JET
[10]  
LIN CS, 1983, IEEE T SYS MAN CYBER, V13