Energetics of protein structure

被引:987
作者
Makhatadze, GI [1 ]
Privalov, PL [1 ]
机构
[1] JOHNS HOPKINS UNIV, CTR BIOCALORIMETRY, BALTIMORE, MD 21218 USA
来源
ADVANCES IN PROTEIN CHEMISTRY, VOL 47 | 1995年 / 47卷
关键词
D O I
10.1016/S0065-3233(08)60548-3
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
This chapter summarizes the experimental information on protein energetics. This field is developing fast and the concept of the energetics of protein structure has changed considerably during the past few years based on new findings. The proteins which are presented in the chapter are selected from a large number of proteins for which the thermodynamics of unfolding are studied in laboratory. The analysis of protein energetics presented in this chapter is based on several assumptions: (1) protein groups contribute additively, and proportionally as their surfaces, to the overall thermodynamic effects of unfolding; (2) the protein interior closely resembles an organic crystal in the way groups are packed and the energetics of the interactions among these groups are similar to those in the organic crystals; and (3) under certain conditions the denatured protein can be regarded as unfolded. The main criteria in choosing these proteins have been the reversibility of the denaturation process modeling unfolding, the completeness of this unfolding, the reliability of thermodynamic data on this process, and the resolution of the three dimensional structure of the given protein. The latter is important to investigate the correlation between thermodynamic and structural characteristics of protein, including the water-ASA of various groups in the native and unfolded states, the number of hydrogen bonds, and the extent of van der Waals contacts in the native state. © 1995, Academic Press Inc.
引用
收藏
页码:307 / 425
页数:119
相关论文
共 351 条
[41]   SIDE-CHAIN ENTROPY AND PACKING IN PROTEINS [J].
BROMBERG, S ;
DILL, KA .
PROTEIN SCIENCE, 1994, 3 (07) :997-1009
[42]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[43]   CRYSTAL STRUCTURAL-ANALYSIS OF MUTATIONS IN THE HYDROPHOBIC CORES OF BARNASE [J].
BUCKLE, AM ;
HENRICK, K ;
FERSHT, AR .
JOURNAL OF MOLECULAR BIOLOGY, 1993, 234 (03) :847-860
[44]  
BURLEY SK, 1988, ADV PROTEIN CHEM, V39, P125
[45]   AROMATIC-AROMATIC INTERACTION - A MECHANISM OF PROTEIN-STRUCTURE STABILIZATION [J].
BURLEY, SK ;
PETSKO, GA .
SCIENCE, 1985, 229 (4708) :23-28
[46]   AMINO-AROMATIC INTERACTIONS IN PROTEINS [J].
BURLEY, SK ;
PETSKO, GA .
FEBS LETTERS, 1986, 203 (02) :139-143
[47]  
Bychkova V.E., 1993, CHEMTRACTS BIOCH MOL, V4, P133
[48]   GROUP CONTRIBUTIONS TO THE THERMODYNAMIC PROPERTIES OF NON-IONIC ORGANIC SOLUTES IN DILUTE AQUEOUS-SOLUTION [J].
CABANI, S ;
GIANNI, P ;
MOLLICA, V ;
LEPORI, L .
JOURNAL OF SOLUTION CHEMISTRY, 1981, 10 (08) :563-595
[49]   3-STATE THERMODYNAMIC ANALYSIS OF THE DENATURATION OF STAPHYLOCOCCAL NUCLEASE MUTANTS [J].
CARRA, JH ;
ANDERSON, EA ;
PRIVALOV, PL .
BIOCHEMISTRY, 1994, 33 (35) :10842-10850
[50]  
CARRA JH, 1994, PROTEIN SCI, V3, P944