KONTSEVICHS INTEGRAL FOR THE HOMFLY POLYNOMIAL AND RELATIONS BETWEEN VALUES OF MULTIPLE ZETA-FUNCTIONS

被引:75
作者
LE, TQT [1 ]
MURAKAMI, J [1 ]
机构
[1] MAX PLANCK INST MATH,D-53225 BONN 3,GERMANY
关键词
KONTSEVICHS INTEGRAL; HOMFLY POLYNOMIAL; ZAGIERS MULTIPLE ZETA FUNCTION;
D O I
10.1016/0166-8641(94)00054-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Kontsevich's integral for the Homfly polynomial is studied by using representations of the chord diagram algebras via classical r-matrices for sl(N) and via a Kauffman type state model. We compute the actual value of the image of W(gamma) by these representations, where gamma is the normalization factor to construct an invariant from the integral. This formula implies relations between values of multiple zeta functions.
引用
收藏
页码:193 / 206
页数:14
相关论文
共 12 条
[1]  
ARNOLD VI, 1993, 1ST EUR C MATH PAR
[2]  
BARNATAN D, 1992, HARVARD PREPRINT
[3]   KNOT POLYNOMIALS AND VASSILIEV INVARIANTS [J].
BIRMAN, JS ;
LIN, XS .
INVENTIONES MATHEMATICAE, 1993, 111 (02) :225-270
[4]  
Drinfeld V. G., 1990, ALGEBRA ANALIZ, V1, P1419
[5]  
KAUFFMAN LH, 1987, TOPOLOGY, V26, P395
[6]  
KOHNO T, 1985, INVENT MATH, V82, P57
[7]  
KOHNO T, 1986, ADV STUD PURE MATH, V16, P255
[8]  
KONTSEVICH M, VASSILIEVS KNOT INVA
[9]  
LIN XS, 1991, VERTEX MODELS QUANTU
[10]   RIBBON GRAPHS AND THEIR INVARIANTS DERIVED FROM QUANTUM GROUPS [J].
RESHETIKHIN, NY ;
TURAEV, VG .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 127 (01) :1-26