A FORNBERG-LIKE CONFORMAL MAPPING METHOD FOR SLENDER REGIONS

被引:12
作者
DELILLO, TK [1 ]
ELCRAT, AR [1 ]
机构
[1] WICHITA STATE UNIV,DEPT MATH & STAT,WICHITA,KS 67208
基金
美国国家科学基金会;
关键词
NUMERICAL CONFORMAL MAPPING; FORNBERG METHOD; CHEBYSHEV SERIES; CROWDING;
D O I
10.1016/0377-0427(93)90286-K
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A method is presented for approximating the conformal map from the interior of an ellipse to the interior of a simply-connected target region. The map is represented as a truncated Chebyshev series. Conditions that the mapping function be conformal are transplanted from the ellipse to an annulus with the Joukowski map. The resulting conditions on the Laurent coefficients then give a system of equations for the Newton update of the approximate boundary correspondence. This system is a generalization of Fornberg's system for maps from the disk and is solved similarly in O(N log N) operations by the conjugate gradient method. Our numerical experiments demonstrate that the maps from the ellipse to a slender target region of similar aspect ratio can be constructed with far fewer mesh points than are required for maps from the disk, thus circumventing the ill-conditioning due to crowding in these cases.
引用
收藏
页码:49 / 64
页数:16
相关论文
共 20 条
[11]  
Royster W. C., 1964, P AM MATH SOC, V15, P661
[12]  
Warschawski S. E., 1952, NBS APPL MATH SER, V18, P175
[13]   ITERATIVE METHOD IN CONFORMAL MAPPING [J].
WEGMANN, R .
NUMERISCHE MATHEMATIK, 1978, 30 (04) :453-466
[14]   ON FORNBERG NUMERICAL-METHOD FOR CONFORMAL MAPPING [J].
WEGMANN, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1986, 23 (06) :1199-1213
[15]   CONVERGENCE PROOFS AND ERROR-ESTIMATES FOR AN ITERATIVE METHOD FOR CONFORMAL MAPPING [J].
WEGMANN, R .
NUMERISCHE MATHEMATIK, 1984, 44 (03) :435-461
[16]   DISCRETIZED VERSIONS OF NEWTON TYPE ITERATIVE METHODS FOR CONFORMAL MAPPING [J].
WEGMANN, R .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1990, 29 (02) :207-224
[17]   AN ITERATIVE METHOD FOR CONFORMAL MAPPING [J].
WEGMANN, R .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1986, 14 (1-2) :7-18
[18]  
WIDLUND O, UNPUB NUMERICAL METH
[19]   A CONFORMAL-MAP FORMULA FOR DIFFICULT CASES [J].
ZEMACH, C .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1986, 14 (1-2) :207-215
[20]  
ZEMACH C, 1986, NUMERICAL CONFORMAL, P207