ON THE GROUP THEORETICAL MEANING OF CONFORMAL FIELD-THEORIES IN THE FRAMEWORK OF COADJOINT ORBITS

被引:10
作者
ARATYN, H [1 ]
NISSIMOV, E [1 ]
PACHEVA, S [1 ]
机构
[1] WEIZMANN INST SCI,DEPT PHYS,IL-76100 REHOVOT,ISRAEL
关键词
D O I
10.1016/0370-2693(90)90726-M
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a unifying approach to conformal field theories and other geometric models within the formalism of coadjoint orbits of infinite dimensional Lie groups with central extensions. Starting from the previously obtained general formula for the symplectic action in terms of two fundamental group one-cocycles, we derive the most general form of the Polyakov-Wiegmann composition laws for any geometric model. These composition laws are succinct expressions of all pertinent Noether symmetries. As a basic consequence we obtain Ward identities allowing for the exact quantum solvability of any geometric model. © 1990.
引用
收藏
页码:401 / 405
页数:5
相关论文
共 26 条
[1]   FROM GEOMETRIC-QUANTIZATION TO CONFORMAL FIELD-THEORY [J].
ALEKSEEV, A ;
SHATASHVILI, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 128 (01) :197-212
[2]   PATH INTEGRAL QUANTIZATION OF THE COADJOINT ORBITS OF THE VIRASORO GROUP AND 2-D GRAVITY [J].
ALEKSEEV, A ;
SHATASHVILI, S .
NUCLEAR PHYSICS B, 1989, 323 (03) :719-733
[3]  
ALEKSEEV A, IN PRESS J GEOM PHYS
[4]   2D EFFECTIVE SUPERGRAVITY ON THE COADJOINT ORBIT OF THE SUPERCONFORMAL-GROUP [J].
AOYAMA, S .
PHYSICS LETTERS B, 1989, 228 (03) :355-358
[5]  
AOYAMA S, DFPD90TH8 PAD PREPR
[6]   THE NOETHER THEOREM FOR GEOMETRIC ACTIONS AND AREA PRESERVING DIFFEOMORPHISMS ON THE TORUS [J].
ARATYN, H ;
NISSIMOV, E ;
PACHEVA, S ;
ZIMERMAN, AH .
PHYSICS LETTERS B, 1990, 242 (3-4) :377-382
[7]   SYMPLECTIC ACTIONS ON COADJOINT ORBITS [J].
ARATYN, H ;
NISSIMOV, E ;
PACHEVA, S ;
ZIMERMAN, AH .
PHYSICS LETTERS B, 1990, 240 (1-2) :127-132
[8]  
ARATYN H, 1980, PHYS LETT B, V234, P307
[9]  
ARATYN H, IN PRESS MOD PHYS A
[10]   INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1984, 241 (02) :333-380