EXACT-SOLUTIONS OF THE CUBIC AND QUINTIC NONLINEAR SCHRODINGER-EQUATION FOR A CYLINDRICAL GEOMETRY

被引:57
作者
GAGNON, L [1 ]
WINTERNITZ, P [1 ]
机构
[1] UNIV MONTREAL, CTR RECH MATH, MONTREAL H3C 3J7, QUEBEC, CANADA
来源
PHYSICAL REVIEW A | 1989年 / 39卷 / 01期
关键词
D O I
10.1103/PhysRevA.39.296
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
引用
收藏
页码:296 / 306
页数:11
相关论文
共 41 条
[11]   ARE ALL THE EQUATIONS OF THE KADOMTSEV-PETVIASHVILI HIERARCHY INTEGRABLE [J].
DORIZZI, B ;
GRAMMATICOS, B ;
RAMANI, A ;
WINTERNITZ, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (12) :2848-2852
[12]  
Faddeev L. D., 1987, HAMILTONIAN METHODS
[13]   LIE SYMMETRIES OF A GENERALIZED NON-LINEAR SCHRODINGER-EQUATION .1. THE SYMMETRY GROUP AND ITS SUBGROUPS [J].
GAGNON, L ;
WINTERNITZ, P .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (07) :1493-1511
[14]  
Gambier B, 1910, ACTA MATH-DJURSHOLM, V33, P1, DOI [10.1007/BF02393211, DOI 10.1007/BF02393211)]
[15]  
GINZBURG VL, 1982, J LOW TEMP PHYS, V49, P507, DOI 10.1007/BF00681899
[16]  
Ginzburg VL., 1950, ZH EKSP TEOR FIZ, V20, P1064, DOI DOI 10.1007/978-3-540-68008-6_4
[17]   STRONG TURBULENCE OF PLASMA-WAVES [J].
GOLDMAN, MV .
REVIEWS OF MODERN PHYSICS, 1984, 56 (04) :709-735
[18]   NEW CLASSES OF EXACT-SOLUTIONS OF THE PHI-6 MODEL IN 3+1 DIMENSIONS [J].
GRUNDLAND, AM ;
TUSZYNSKI, JA ;
WINTERNITZ, P .
PHYSICS LETTERS A, 1987, 119 (07) :340-344
[19]  
Ince E. L., 1956, ORDINARY DIFFERENTIA
[20]   MODULATION OF WATER-WAVES IN NEIGHBORHOOD OF KH ALMOST EQUAL TO 1.363 [J].
JOHNSON, RS .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1977, 357 (1689) :131-141