CLUSTERED MOTION IN SYMPLECTIC COUPLED MAP SYSTEMS

被引:89
作者
KONISHI, T [1 ]
KANEKO, K [1 ]
机构
[1] UNIV TOKYO,COLL ARTS & SCI,DEPT PURE & APPL SCI,MEGURO KU,TOKYO 153,JAPAN
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1992年 / 25卷 / 23期
关键词
D O I
10.1088/0305-4470/25/23/023
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Clustered motion of particles is found in Hamiltonian dynamics of symplectic coupled map systems. Particles assemble and move with strong correlation. The motion is chaotic but is distinguishable from random chaotic motion. Lyapunov analysis distinguishes global instability from local fluctuations. Clustered motions have finite lifetime. They have fractal geometric structure in the phase space, as the orbits are trapped to ruins of KAM tori and islands.
引用
收藏
页码:6283 / 6296
页数:14
相关论文
共 41 条
[1]  
AIZAWA Y, 1989, PROG THEOR PHYS S, V98, P36
[2]  
Arnol&PRIME
[3]  
d V. I., 1964, SOV MATH DOKL, V5, P581
[4]  
BENETTIN G, 1978, CR ACAD SCI A MATH, V286, P431
[5]   UNIVERSAL INSTABILITY OF MANY-DIMENSIONAL OSCILLATOR SYSTEMS [J].
CHIRIKOV, BV .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1979, 52 (05) :263-379
[6]   LIAPUNOV SPECTRA FOR INFINITE CHAINS OF NONLINEAR OSCILLATORS [J].
ECKMANN, JP ;
WAYNE, CE .
JOURNAL OF STATISTICAL PHYSICS, 1988, 50 (5-6) :853-878
[7]   ERGODIC-THEORY OF CHAOS AND STRANGE ATTRACTORS [J].
ECKMANN, JP ;
RUELLE, D .
REVIEWS OF MODERN PHYSICS, 1985, 57 (03) :617-656
[8]   THE LARGEST LIAPUNOV EXPONENT FOR RANDOM MATRICES AND DIRECTED POLYMERS IN A RANDOM ENVIRONMENT [J].
ECKMANN, JP ;
WAYNE, CE .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 121 (01) :147-175
[9]   ERGODIC PROPERTIES OF HIGH-DIMENSIONAL SYMPLECTIC MAPS [J].
FALCIONI, M ;
MARCONI, UMB ;
VULPIANI, A .
PHYSICAL REVIEW A, 1991, 44 (04) :2263-2270
[10]  
FROESCHLE C, 1972, ASTRON ASTROPHYS, V16, P172