A SIMPLE PROOF OF A NO-HAIR THEOREM IN EINSTEIN-HIGGS THEORY

被引:135
作者
SUDARSKY, D [1 ]
机构
[1] UNIV AUTONOMA SANTO DOMINGO,DEPT FIS,SANTO DOMINGO,DOMINICAN REP
关键词
D O I
10.1088/0264-9381/12/2/023
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We give a new simple proof of the fact that there are no non-trivial black holes with a regular horizon in Einstein-Higgs theory with any number of scalar fields and an arbitrary potential. We also give a brief discussion on the contrast between this theory and the Einstein-Yang-Mills theory that is responsible for the difference in the set of solutions allowed by each one.
引用
收藏
页码:579 / 584
页数:6
相关论文
共 23 条
[11]  
Ellis G. F. R., 1973, LARGE SCALE STRUCTUR
[12]   ELUDING THE NO-HAIR CONJECTURE - BLACK-HOLES IN SPONTANEOUSLY BROKEN GAUGE-THEORIES [J].
GREENE, BR ;
MATHUR, SD ;
ONEILL, CM .
PHYSICAL REVIEW D, 1993, 47 (06) :2242-2259
[13]  
HARTLE JB, 1972, MAGIC MAGIC
[14]   A NO-HAIR THEOREM FOR SELF-GRAVITATING NONLINEAR SIGMA-MODELS [J].
HEUSLER, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (10) :3497-3502
[15]   SPHERICALLY SYMMETRIC STATIC SU(2) EINSTEIN-YANG-MILLS FIELDS [J].
KUNZLE, HP ;
MASOODULALAM, AKM .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (04) :928-935
[16]  
LAVRELASHVILI G, 1992, MPIPH92115 M PLANK I
[17]   EXTENSIONS OF SPACETIMES WITH KILLING HORIZONS [J].
RACZ, I ;
WALD, RM .
CLASSICAL AND QUANTUM GRAVITY, 1992, 9 (12) :2643-2656
[18]  
RAJAMARAN R, 1982, INSTANTONS SOLITONS
[19]  
ROBINSON DC, 1977, PHYS REV LETT, V34, P905
[20]   EXTREMA OF MASS, STATIONARITY, AND STATICITY, AND SOLUTIONS TO THE EINSTEIN-YANG-MILLS EQUATIONS [J].
SUDARSKY, D ;
WALD, RM .
PHYSICAL REVIEW D, 1992, 46 (04) :1453-1474