2 CYSTEINES IN EACH PERIPLASMIC DOMAIN OF THE MEMBRANE-PROTEIN DSBB ARE REQUIRED FOR ITS FUNCTION IN PROTEIN DISULFIDE BOND FORMATION

被引:104
作者
JANDER, G
MARTIN, NL
BECKWITH, J
机构
[1] Department of Microbiology, Harvard Medical School, Boston, MA 02115
关键词
CYSTEINE; DSBB; DISULFIDE BOND; MEMBRANE PROTEIN; TOPOLOGY;
D O I
10.1002/j.1460-2075.1994.tb06841.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
DsbB is a protein component of the pathway that leads to disulfide bond formation in periplasmic proteins of Escherichia coli. Previous studies have led to the hypothesis that DsbB oxidizes the periplasmic protein DsbA, which in turn oxidizes the cysteines in other periplasmic proteins to make disulfide bonds. Gene fusion approaches were used to show that (i) DsbB is a membrane protein which spans the membrane four times and (ii) both the N- and C-termini of the protein are in the cytoplasm. Mutational analysis shows that of the six cysteines in DsbB, four are necessary for proper DsbB function in vivo. Each of the periplasmic domains of the protein has two essential cysteines. The two cysteines in the first periplasmic domain are in a Cys-X-Y-Cys configuration that is characteristic of the active site of other proteins involved in disulfide bond formation, including DsbA and protein disulfide isomerase.
引用
收藏
页码:5121 / 5127
页数:7
相关论文
共 36 条
[1]   SIMPLE, RAPID, AND QUANTITATIVE RELEASE OF PERIPLASMIC PROTEINS BY CHLOROFORM [J].
AMES, GF ;
PRODY, C ;
KUSTU, S .
JOURNAL OF BACTERIOLOGY, 1984, 160 (03) :1181-1183
[2]   THE BONDS THAT TIE - CATALYZED DISULFIDE BOND FORMATION [J].
BARDWELL, JCA ;
BECKWITH, J .
CELL, 1993, 74 (05) :769-771
[3]   A PATHWAY FOR DISULFIDE BOND FORMATION INVIVO [J].
BARDWELL, JCA ;
LEE, JO ;
JANDER, G ;
MARTIN, N ;
BELIN, D ;
BECKWITH, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (03) :1038-1042
[4]   IDENTIFICATION OF A PROTEIN REQUIRED FOR DISULFIDE BOND FORMATION INVIVO [J].
BARDWELL, JCA ;
MCGOVERN, K ;
BECKWITH, J .
CELL, 1991, 67 (03) :581-589
[5]  
BERGMAN LW, 1979, J BIOL CHEM, V254, P5690
[6]   POSITIVELY CHARGED AMINO-ACID RESIDUES CAN ACT AS TOPOGENIC DETERMINANTS IN MEMBRANE-PROTEINS [J].
BOYD, D ;
BECKWITH, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (23) :9446-9450
[7]   ANALYSIS OF THE TOPOLOGY OF A MEMBRANE-PROTEIN BY USING A MINIMUM NUMBER OF ALKALINE-PHOSPHATASE FUSIONS [J].
BOYD, D ;
TRAXLER, B ;
BECKWITH, J .
JOURNAL OF BACTERIOLOGY, 1993, 175 (02) :553-556
[8]   ANALYSIS OF REGULATION OF ESCHERICHIA-COLI ALKALINE-PHOSPHATASE SYNTHESIS USING DELETIONS AND PHI-80 TRANSDUCING PHAGES [J].
BRICKMAN, E ;
BECKWITH, J .
JOURNAL OF MOLECULAR BIOLOGY, 1975, 96 (02) :307-316
[9]  
Creighton T E, 1992, PROTEIN FOLDING
[10]   CATALYSIS BY PROTEIN-DISULFIDE ISOMERASE OF THE UNFOLDING AND REFOLDING OF PROTEINS WITH DISULFIDE BONDS [J].
CREIGHTON, TE ;
HILLSON, DA ;
FREEDMAN, RB .
JOURNAL OF MOLECULAR BIOLOGY, 1980, 142 (01) :43-62