GALERKIN APPROXIMATION IN MODELING OF CONTROLLED DISTRIBUTED-PARAMETER FLEXIBLE SYSTEMS

被引:5
作者
GORINEVSKY, DM [1 ]
机构
[1] TECH UNIV MUNICH,INST & LEHRSTUHL B MECH,W-8000 MUNICH 2,GERMANY
关键词
D O I
10.1016/0045-7825(93)90187-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Numerical study of control problems for linear distributed-parameter flexible mechanical systems requires finite-dimensional modeling of the system. We study the conditions for H(infinity) convergence of the transfer functions of finite-dimensional Galerkin approximations. This convergence ensures that control problems can be solved by using a Galerkin model. A stabilization problem for the angular position of a Bernoulli-Euler beam illustrates the theoretical consideration. The beam with an inertial drive represents a flexible manipulator link.
引用
收藏
页码:107 / 128
页数:22
相关论文
共 30 条
[1]  
ALBERTS TE, 1985, 1985 ROB 9 INT C P D
[2]  
[Anonymous], 1974, STABILITY SOLUTIONS
[3]   THE IDENTIFICATION OF A DISTRIBUTED PARAMETER MODEL FOR A FLEXIBLE STRUCTURE [J].
BANKS, HT ;
GATES, SS ;
ROSEN, IG ;
WANG, Y .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1988, 26 (04) :743-762
[4]  
BARBIERI E, 1990, T ASME, V110, P416
[5]   A NOTE ON SPILLOVER AND ROBUSTNESS FOR FLEXIBLE SYSTEMS [J].
BONTSEMA, J ;
CURTAIN, RF .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1988, 33 (06) :567-569
[6]   INITIAL EXPERIMENTS ON THE ENDPOINT CONTROL OF A FLEXIBLE ONE-LINK ROBOT [J].
CANNON, RH ;
SCHMITZ, E .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 1984, 3 (03) :62-75
[7]   A NATURAL MODAL EXPANSION FOR THE FLEXIBLE ROBOT ARM PROBLEM VIA A SELF-ADJOINT FORMULATION [J].
CHAIT, Y ;
MIKLAVCIC, M ;
MACCLUER, CR ;
RADCLIFFE, CJ .
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 1990, 6 (05) :601-603
[8]   A MATHEMATICAL-MODEL FOR LINEAR ELASTIC-SYSTEMS WITH STRUCTURAL DAMPING [J].
CHEN, G ;
RUSSELL, DL .
QUARTERLY OF APPLIED MATHEMATICS, 1982, 39 (04) :433-454
[9]   NECESSARY AND SUFFICIENT CONDITION FOR ROBUST STABILITY OF LINEAR DISTRIBUTED FEEDBACK-SYSTEMS [J].
CHEN, MJ ;
DESOER, CA .
INTERNATIONAL JOURNAL OF CONTROL, 1982, 35 (02) :255-267
[10]   ROBUST STABILIZATION OF INFINITE DIMENSIONAL SYSTEMS BY FINITE DIMENSIONAL CONTROLLERS [J].
CURTAIN, RF ;
GLOVER, K .
SYSTEMS & CONTROL LETTERS, 1986, 7 (01) :41-47