Black hole entropy in the O(N) model

被引:43
作者
Kabat, D
Shenker, SH
Strassler, MJ
机构
[1] Department of Physics and Astronomy, Rutgers University, Piscataway
来源
PHYSICAL REVIEW D | 1995年 / 52卷 / 12期
关键词
D O I
10.1103/PhysRevD.52.7027
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We consider corrections to the entropy of a black hole from an O(N)-invariant linear sigma model. We obtain the entropy from a 1/N expansion of the partition function on a cone. The entropy arises from diagrams which are analogous to those introduced by Susskind and Uglum to explain black hole entropy in string theory. The interpretation of the sigma-model entropy depends on scale. At short distances, it has a state counting interpretation, as the entropy of entanglement of the N fields phi(a). In the infrared, the effective theory has a single composite field sigma similar to phi(a) phi(a), and the state counting interpretation of the entropy is lost.
引用
收藏
页码:7027 / 7036
页数:10
相关论文
共 33 条
[1]  
ALVAREZGAUME L, 1983, NUCL PHYS B, V234, P269
[2]   BLACK-HOLE ENTROPY AND THE DIMENSIONAL CONTINUATION OF THE GAUSS-BONNET THEOREM [J].
BANADOS, M ;
TEITELBOIM, C ;
ZANELLI, J .
PHYSICAL REVIEW LETTERS, 1994, 72 (07) :957-960
[3]  
Birrell N. D., 1982, Quantum fields in curved space
[4]   QUANTUM SOURCE OF ENTROPY FOR BLACK-HOLES [J].
BOMBELLI, L ;
KOUL, RK ;
LEE, J ;
SORKIN, RD .
PHYSICAL REVIEW D, 1986, 34 (02) :373-383
[5]   ON GEOMETRIC ENTROPY [J].
CALLAN, C ;
WILCZEK, F .
PHYSICS LETTERS B, 1994, 333 (1-2) :55-61
[6]   THE OFF-SHELL BLACK-HOLE [J].
CARLIP, S ;
TEITELBOIM, C .
CLASSICAL AND QUANTUM GRAVITY, 1995, 12 (07) :1699-1704
[7]   THERMODYNAMICS OF QUANTUM-FIELDS IN BLACK-HOLE BACKGROUNDS [J].
DEALWIS, SP ;
OHTA, N .
PHYSICAL REVIEW D, 1995, 52 (06) :3529-3542
[8]  
DEALWIS SP, HEPTH9412027 REP
[9]  
DEBOER J, HEPTH9504097 REP
[10]   BLACK-HOLE ENTROPY WITHOUT BRICK WALLS [J].
DEMERS, JG ;
LAFRANCE, R ;
MYERS, RC .
PHYSICAL REVIEW D, 1995, 52 (04) :2245-2253