Total Variation Regularization of Matrix-Valued Images

被引:22
作者
Christiansen, Oddvar [1 ]
Lee, Tin-Man [2 ]
Lie, Johan [1 ]
Sinha, Usha [2 ]
Chan, Tony F. [3 ]
机构
[1] Univ Bergen, Fac Math & Nat Sci, Dept Math, N-5008 Bergen, Norway
[2] Univ Calif Los Angeles, Dept Radiol Sci, Med Imaging Informat Grp, Los Angeles, CA 90024 USA
[3] Univ Calif Los Angeles, Coll Ietters Sci, Div Phys Sci, Los Angeles, CA 90095 USA
关键词
D O I
10.1155/2007/27432
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We generalize the total variation restoration model, introduced by Rudin, Osher, and Fatemi in 1992, to matrix-valued data, in particular, to diffusion tensor images (DTIs). Our model is a natural extension of the color total variation model proposed by Blomgren and Chan in 1998. We treat the diffusion matrix D implicitly as the product D = LLT, and work with the elements of L as variables, instead of working directly on the elements of D. This ensures positive definiteness of the tensor during the regularization flow, which is essential when regularizing DTI. We perform numerical experiments on both synthetical data and 3D human brain DTI, and measure the quantitative behavior of the proposed model. Copyright (C) 2007 Oddvar Christiansen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
引用
收藏
页数:11
相关论文
共 28 条
[1]   Basic principles of diffusion-weighted imaging [J].
Bammer, R .
EUROPEAN JOURNAL OF RADIOLOGY, 2003, 45 (03) :169-184
[2]   MR DIFFUSION TENSOR SPECTROSCOPY AND IMAGING [J].
BASSER, PJ ;
MATTIELLO, J ;
LEBIHAN, D .
BIOPHYSICAL JOURNAL, 1994, 66 (01) :259-267
[3]   Color TV: Total variation methods for restoration of vector-valued images [J].
Blomgren, P ;
Chan, TF .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1998, 7 (03) :304-309
[4]  
Chan TF, 2005, IMAGE PROCESSING AND ANALYSIS, P1, DOI 10.1137/1.9780898717877
[5]   Aspects of total variation regularized L1 function approximation [J].
Chan, TF ;
Esedoglu, S .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2005, 65 (05) :1817-1837
[6]   A nonlinear primal-dual method for total variation-based image restoration [J].
Chan, TF ;
Golub, GH ;
Mulet, P .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 20 (06) :1964-1977
[7]  
ChefD'Hotel C, 2004, J MATH IMAGING VIS, V20, P147, DOI 10.1023/B:JMIV.0000011324.14508.fb
[8]   Noise removal in magnetic resonance diffusion tensor imaging [J].
Chen, B ;
Hsu, EW .
MAGNETIC RESONANCE IN MEDICINE, 2005, 54 (02) :393-401
[9]   Some differential-geometric remarks on a method for minimizing constrained functionals of matrix-valued functions [J].
Groisser, D .
JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2006, 24 (03) :349-358
[10]  
Gur Y, 2005, LECT NOTES COMPUT SC, V3752, P13