MULTIMATRIX MODEL AND 2D TODA MULTICOMPONENT HIERARCHY

被引:11
作者
AHN, C [1 ]
SHIGEMOTO, K [1 ]
机构
[1] TEZUKAYAMA GAKUIN UNIV, NARA 631, JAPAN
基金
美国国家科学基金会;
关键词
D O I
10.1016/0370-2693(91)91705-Z
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study the integrability of the hermitian matrix-chain model at finite N. The integrable system, constructed from the matrix integrals using orthogonal polynomials is identified with the two-dimensional Toda system with multi-component hierarchy. We derive the Lax equations, the zero curvature conditions and an infinite number of conserved quantities for this 2D Toda hierarchy. The partition function of the matrix model is proved to be the "tau-function" of this Toda system. Also, using our formalism, we derive the Virasoro constraints on the partition function of the multi-matrix model for the first time.
引用
收藏
页码:44 / 50
页数:7
相关论文
共 17 条
[11]  
GERASIMOV A, 1990, 900576 LEB PREPR
[12]   NONPERTURBATIVE 2-DIMENSIONAL QUANTUM-GRAVITY [J].
GROSS, DJ ;
MIGDAL, AA .
PHYSICAL REVIEW LETTERS, 1990, 64 (02) :127-130
[13]   NONCRITICAL VIRASORO ALGEBRA OF THE D-LESS-THAN-1 MATRIX MODEL AND THE QUANTIZED STRING FIELD [J].
ITOYAMA, H ;
MATSUO, Y .
PHYSICS LETTERS B, 1991, 255 (02) :202-208
[14]  
MARTINEC E, EFI9067 E FERM PREPR
[15]   ON THE ORIGIN OF VIRASORO CONSTRAINTS IN MATRIX MODELS - LAGRANGIAN APPROACH [J].
MIRONOV, A ;
MOROZOV, A .
PHYSICS LETTERS B, 1990, 252 (01) :47-52
[16]  
Ueno K., 1984, GROUP REPRESENTATION, V4, P1
[17]  
[No title captured]