A SPACETIME FOR WHICH THE KARLHEDE INVARIANT CLASSIFICATION REQUIRES THE 4TH COVARIANT DERIVATIVE OF THE RIEMANN TENSOR

被引:24
作者
KOUTRAS, A
机构
[1] School of Mathematical Sciences, Queen Mary and Westfield College, London, Mile End Road
关键词
D O I
10.1088/0264-9381/9/10/003
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
It is shown that the conformally flat radiation metric found by Wils requires the fourth covariant derivative of the Riemann tensor for the Karlhede classification to terminate. This contradicts a widely held opinion that the true upper bound is three. The metric can admit at most one Killing vector and/or a homothety.
引用
收藏
页码:L143 / L145
页数:3
相关论文
共 11 条
[1]  
Aman J.E., 1987, MANUAL CLASSI CLASSI
[2]   AUTOMORPHISMS IN ACTION - SPATIALLY HOMOGENEOUS EINSTEIN-MAXWELL PLANE-WAVES [J].
ARAUJO, ME ;
SKEA, JEF .
CLASSICAL AND QUANTUM GRAVITY, 1988, 5 (08) :1073-1096
[4]  
Cartan E., 1946, LECONS GEOMETRIE ESP, V2nd
[5]   THE KARLHEDE CLASSIFICATION OF TYPE-N VACUUM SPACETIMES [J].
COLLINS, JM .
CLASSICAL AND QUANTUM GRAVITY, 1991, 8 (10) :1859-1869
[6]   THE KARLHEDE CLASSIFICATION OF TYPE-D VACUUM SPACETIMES [J].
COLLINS, JM ;
DINVERNO, RA ;
VICKERS, JA .
CLASSICAL AND QUANTUM GRAVITY, 1990, 7 (11) :2005-2015
[7]   UPPER-BOUNDS FOR THE KARLHEDE CLASSIFICATION OF TYPE-D VACUUM SPACETIMES [J].
COLLINS, JM ;
DINVERNO, RA ;
VICKERS, JA .
CLASSICAL AND QUANTUM GRAVITY, 1991, 8 (11) :L215-L217
[8]   A REVIEW OF THE GEOMETRICAL EQUIVALENCE OF METRICS IN GENERAL-RELATIVITY [J].
KARLHEDE, A .
GENERAL RELATIVITY AND GRAVITATION, 1980, 12 (09) :693-707
[9]  
MACCALLAM MAH, 1992, 1ST P BRAZ SCH COMP
[10]   EXACT RADIATIVE SOLUTIONS FOR CONFORMALLY INVARIANT FIELDS ON A CONFORMALLY FLAT BACKGROUND [J].
VANDENBERGH, N ;
GUNZIG, E ;
NARDONE, P .
CLASSICAL AND QUANTUM GRAVITY, 1990, 7 (08) :L175-L179