INTERMEDIATE RANK LATTICE RULES FOR MULTIDIMENSIONAL INTEGRATION

被引:7
作者
JOE, S [1 ]
DISNEY, SAR [1 ]
机构
[1] UNIV NEW S WALES,SCH MATH,SYDNEY,NSW,AUSTRALIA
关键词
LATTICE RULES; MULTIDIMENSIONAL INTEGRATION;
D O I
10.1137/0730027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Every lattice rule in s dimensions may be characterised by an integer m, lying between 1 and s inclusive, called the rank or index of the rule and a set of m positive integers called the invariants. Earlier work has shown that, in a certain precise sense, lattice rules of rank s are better than the commonly used rank-1 rules. Here this earlier work is extended by showing that a similar result holds for certain lattice rules of intermediate rank m < s.
引用
收藏
页码:569 / 582
页数:14
相关论文
共 17 条
[1]   RANDOMIZATION OF NUMBER THEORETIC METHODS FOR MULTIPLE INTEGRATION [J].
CRANLEY, R ;
PATTERSON, TNL .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1976, 13 (06) :904-914
[2]   LATTICE INTEGRATION RULES OF MAXIMAL RANK FORMED BY COPYING RANK-1 RULES [J].
DISNEY, S ;
SLOAN, IH .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (02) :566-577
[3]   ERROR-BOUNDS FOR RANK 1 LATTICE QUADRATURE-RULES MODULO COMPOSITES [J].
DISNEY, S .
MONATSHEFTE FUR MATHEMATIK, 1990, 110 (02) :89-100
[4]  
DISNEY S, 1991, MATH COMPUT, V56, P257, DOI 10.1090/S0025-5718-1991-1052090-6
[5]   NUMERICAL EVALUATION OF MULTIPLE INTEGRALS [J].
HABER, S .
SIAM REVIEW, 1970, 12 (04) :481-&
[6]  
Hlawka E., 1962, MONATSH MATH, V66, P140
[7]   IMBEDDED LATTICE RULES FOR MULTIDIMENSIONAL INTEGRATION [J].
JOE, S ;
SLOAN, IH .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (04) :1119-1135
[8]  
KOROBOV NM, 1959, DOKL AKAD NAUK SSSR+, V124, P1207
[9]  
LYNESS JN, 1988, INT SERIES NUMERICAL, V85, P117
[10]   QUASI-MONTE CARLO METHODS AND PSEUDO-RANDOM NUMBERS [J].
NIEDERREITER, H .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 84 (06) :957-1041