MIXED APPROXIMATION OF A POPULATION DIFFUSION EQUATION

被引:17
作者
KIM, MY [1 ]
PARK, EJ [1 ]
机构
[1] UNIV TRENT, DIPARTIMENTO MATEMAT, I-38050 TRENT, ITALY
关键词
INTEGRODIFFERENTIAL EQUATION; MIXED FINITE ELEMENT METHOD; METHOD OF CHARACTERISTICS; ERROR ESTIMATES;
D O I
10.1016/0898-1221(95)00172-U
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A numerical method is proposed to approximate the solution of a nonlinear and nonlocal system of integro-differential equations describing age-dependent population dynamics with spatial diffusion. A finite difference method along the characteristic age-time direction combined with mixed finite elements in the spatial variable is used for the approximation. Optimal order error estimates are derived for the relevant variables. Using nonnegativity of the discrete solution, a stability of the method is also proved.
引用
收藏
页码:23 / 33
页数:11
相关论文
共 29 条
[1]  
[Anonymous], 1977, MATH ASPECTS FINITE
[2]  
ARNOLD DN, 1985, RAIRO-MATH MODEL NUM, V19, P7
[3]  
Brezzi F., 2012, MIXED HYBRID FINITE, V15
[4]   A CLASS OF NON-LINEAR DIFFUSION-PROBLEMS IN AGE-DEPENDENT POPULATION-DYNAMICS [J].
BUSENBERG, S ;
IANNELLI, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1983, 7 (05) :501-529
[5]  
Ciarlet P. G., 2002, FINITE ELEMENT METHO
[6]   A PARALLEL ITERATIVE PROCEDURE APPLICABLE TO THE APPROXIMATE SOLUTION OF 2ND-ORDER PARTIAL-DIFFERENTIAL EQUATIONS BY MIXED FINITE-ELEMENT METHODS [J].
DOUGLAS, J ;
LEME, PJP ;
ROBERTS, JE ;
WANG, JP .
NUMERISCHE MATHEMATIK, 1993, 65 (01) :95-108
[7]  
DOUGLAS J, 1985, MATH COMPUT, V44, P39, DOI 10.1090/S0025-5718-1985-0771029-9
[8]   DIFFUSION EPIDEMIC MODELS WITH INCUBATION AND CRISSCROSS DYNAMICS [J].
FITZGIBBON, WE ;
PARROTT, ME ;
WEBB, GF .
MATHEMATICAL BIOSCIENCES, 1995, 128 (1-2) :131-155
[9]  
FITZGIBBON WE, 1994, DIFFUSIVE EPIDEMIC M
[10]   DIFFUSION-MODELS FOR AGE-STRUCTURED POPULATIONS [J].
GURTIN, ME ;
MACCAMY, RC .
MATHEMATICAL BIOSCIENCES, 1981, 54 (1-2) :49-59