PERIODIC-ORBITS OF NONSCALING HAMILTONIAN-SYSTEMS FROM QUANTUM-MECHANICS

被引:18
作者
BARANGER, M
HAGGERTY, MR
LAURITZEN, B
MEREDITH, DC
PROVOST, D
机构
[1] MIT,DEPT PHYS,CAMBRIDGE,MA 02139
[2] UNIV NEW HAMPSHIRE,DEPT PHYS,DURHAM,NH 03824
[3] UNIV TORONTO,DEPT CHEM,CHEM PHYS THEORY GRP,TORONTO,ON M5S 1A1,CANADA
关键词
D O I
10.1063/1.166075
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Quantal (E, τ) plots are constructed from the eigenvalues of the quantum system. We demonstrate that these representations display the periodic orbits of the classical system, including bifurcations and the transition from stable to unstable. © 1995 American Institute of Physics.
引用
收藏
页码:261 / 270
页数:10
相关论文
共 43 条
[31]   QUANTUM SIGNATURE OF A PERIOD-DOUBLING BIFURCATION AND SCARS OF PERIODIC-ORBITS [J].
MALTA, CP ;
DEAGUIAR, MAM ;
DEALMEIDA, AMO .
PHYSICAL REVIEW A, 1993, 47 (03) :1625-1632
[32]  
MEHTA ML, 1972, RANDOM MATRICES
[33]   QUANTUM CHAOS IN A SCHEMATIC SHELL-MODEL [J].
MEREDITH, DC ;
KOONIN, SE ;
ZIRNBAUER, MR .
PHYSICAL REVIEW A, 1988, 37 (09) :3499-3513
[34]  
MEYER Y, 1993, WAVELETS ALGORITHMS, P63
[35]  
Ozorio de Almeida A.M., 1988, HAMILTONIAN SYSTEMS
[36]  
POINCARE H, 1892, METHODES NOUVELLES M, V1, pCH3
[37]   SEMICLASSICAL CALCULATION OF SCARS FOR A SMOOTH POTENTIAL [J].
PROVOST, D ;
BARANGER, M .
PHYSICAL REVIEW LETTERS, 1993, 71 (05) :662-665
[38]  
PROVOST D, 1992, THESIS MIT
[39]   DISCRETE SYMMETRIES IN PERIODIC-ORBIT THEORY [J].
ROBBINS, JM .
PHYSICAL REVIEW A, 1989, 40 (04) :2128-2136
[40]  
SARACENO M, 1992, COMMUNICATION