PERIODIC-ORBITS OF NONSCALING HAMILTONIAN-SYSTEMS FROM QUANTUM-MECHANICS

被引:18
作者
BARANGER, M
HAGGERTY, MR
LAURITZEN, B
MEREDITH, DC
PROVOST, D
机构
[1] MIT,DEPT PHYS,CAMBRIDGE,MA 02139
[2] UNIV NEW HAMPSHIRE,DEPT PHYS,DURHAM,NH 03824
[3] UNIV TORONTO,DEPT CHEM,CHEM PHYS THEORY GRP,TORONTO,ON M5S 1A1,CANADA
关键词
D O I
10.1063/1.166075
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Quantal (E, τ) plots are constructed from the eigenvalues of the quantum system. We demonstrate that these representations display the periodic orbits of the classical system, including bifurcations and the transition from stable to unstable. © 1995 American Institute of Physics.
引用
收藏
页码:261 / 270
页数:10
相关论文
共 43 条
[21]   BOUND-STATE EIGENFUNCTIONS OF CLASSICALLY CHAOTIC HAMILTONIAN-SYSTEMS - SCARS OF PERIODIC-ORBITS [J].
HELLER, EJ .
PHYSICAL REVIEW LETTERS, 1984, 53 (16) :1515-1518
[22]   APPLICABILITY OF 3 INTEGRAL OF MOTION - SOME NUMERICAL EXPERIMENTS [J].
HENON, M ;
HEILES, C .
ASTRONOMICAL JOURNAL, 1964, 69 (01) :73-&
[23]   QUASI-LANDAU SPECTRUM OF THE CHAOTIC DIAMAGNETIC HYDROGEN-ATOM [J].
HOLLE, A ;
MAIN, J ;
WIEBUSCH, G ;
ROTTKE, H ;
WELGE, KH .
PHYSICAL REVIEW LETTERS, 1988, 61 (02) :161-164
[24]  
HUSTON TE, 1991, CHAOS, V2, P215
[25]   PREBIFURCATION PERIODIC GHOST ORBITS IN SEMICLASSICAL QUANTIZATION [J].
KUS, M ;
HAAKE, F ;
DELANDE, D .
PHYSICAL REVIEW LETTERS, 1993, 71 (14) :2167-2171
[26]   QUANTUM EFFECTS OF PERIODIC-ORBITS FOR THE KICKED TOP [J].
KUS, M ;
HAAKE, F ;
ECKHARDT, B .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1993, 92 (02) :221-233
[27]   DISCRETE SYMMETRIES AND THE PERIODIC-ORBIT EXPANSIONS [J].
LAURITZEN, B .
PHYSICAL REVIEW A, 1991, 43 (01) :603-606
[28]   EIGENFUNCTIONS OF NONINTEGRABLE SYSTEMS IN GENERALIZED PHASE SPACES [J].
LEBOEUF, P ;
SARACENO, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (10) :1745-1764
[29]   STRUCTURE OF EIGENFUNCTIONS IN TERMS OF CLASSICAL TRAJECTORIES IN AN SU(3) SCHEMATIC SHELL-MODEL [J].
LEBOEUF, P ;
SARACENO, M .
PHYSICAL REVIEW A, 1990, 41 (09) :4614-4624
[30]   VALIDITY OF MANY-BODY APPROXIMATION METHODS FOR A SOLVABLE MODEL .I. EXACT SOLUTIONS AND PERTURBATION THEORY [J].
LIPKIN, HJ ;
MESHKOV, N ;
GLICK, AJ .
NUCLEAR PHYSICS, 1965, 62 (02) :188-&