COMPUTING HYSTERESIS POINTS OF NONLINEAR EQUATIONS DEPENDING ON 2 PARAMETERS

被引:9
作者
PONISCH, G
机构
关键词
D O I
10.1007/BF02307709
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
引用
收藏
页码:1 / 17
页数:17
相关论文
共 11 条
[1]   INEXACT NEWTON METHODS [J].
DEMBO, RS ;
EISENSTAT, SC ;
STEIHAUG, T .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (02) :400-408
[2]  
ELST G, 1986, COMMUNICATION
[3]   FOLDS IN SOLUTIONS OF 2 PARAMETER-SYSTEMS AND THEIR CALCULATION .1. [J].
JEPSON, A ;
SPENCE, A .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1985, 22 (02) :347-368
[4]   A COMPARISON OF METHODS FOR DETERMINING TURNING-POINTS OF NON-LINEAR EQUATIONS [J].
MELHEM, RG ;
RHEINBOLDT, WC .
COMPUTING, 1982, 29 (03) :201-226
[5]   COMPUTING SIMPLE BIFURCATION POINTS USING A MINIMALLY EXTENDED SYSTEM OF NONLINEAR EQUATIONS [J].
PONISCH, G .
COMPUTING, 1985, 35 (3-4) :277-294
[6]   COMPUTING TURNING-POINTS OF CURVES IMPLICITLY DEFINED BY NON-LINEAR EQUATIONS DEPENDING ON A PARAMETER [J].
PONISCH, G ;
SCHWETLICK, H .
COMPUTING, 1981, 26 (02) :107-121
[7]   NUMERICAL COMPUTATION OF NONSIMPLE TURNING-POINTS AND CUSPS [J].
ROOSE, D ;
PIESSENS, R .
NUMERISCHE MATHEMATIK, 1985, 46 (02) :189-211
[8]  
ROOSE D, 1984, ISNM, V70, P426
[9]  
Schwetlick H, 1979, NUMERISCHE LOSUNG NI
[10]   NON-SIMPLE TURNING-POINTS AND CUSPS [J].
SPENCE, A ;
WERNER, B .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1982, 2 (04) :413-427