POISSON LIE GROUP SYMMETRIES FOR THE ISOTROPIC ROTATOR

被引:17
作者
MARMO, G [1 ]
SIMONI, A [1 ]
STERN, A [1 ]
机构
[1] UNIV ALABAMA,DEPT PHYS,TUSCALOOSA,AL 35487
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS A | 1995年 / 10卷 / 01期
关键词
D O I
10.1142/S0217751X9500005X
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We find a new Hamiltonian formulation of the classical isotropic rotator where left; and right SU(2) transformations are not canonical symmetries but rather Poisson Lie group symmetries. The system corresponds to the classical analog of a quantum-mechanical rotator which possesses quantum group symmetries. We also examine systems of two classical interacting rotators having Poisson Lie group symmetries.
引用
收藏
页码:99 / 114
页数:16
相关论文
共 21 条
[1]  
ALEKSEEV AY, 1978, PHYS REV D, V17, P3247
[2]  
ALEKSEEV AY, PARLPTHE9308 PAR PRE
[3]   GROUPS OF DRESSING TRANSFORMATIONS FOR INTEGRABLE MODELS IN DIMENSION 2 [J].
AVAN, J ;
BELLON, M .
PHYSICS LETTERS B, 1988, 213 (04) :459-465
[4]   AFFINE SOLITONS - A RELATION BETWEEN TAU-FUNCTIONS, DRESSING AND BACKLUND-TRANSFORMATIONS [J].
BABELON, O ;
BERNARD, D .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1993, 8 (03) :507-543
[5]   DRESSING SYMMETRIES [J].
BABELON, O ;
BERNARD, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 149 (02) :279-306
[6]   DRESSING TRANSFORMATIONS AND THE ORIGIN OF THE QUANTUM GROUP SYMMETRIES [J].
BABELON, O ;
BERNARD, D .
PHYSICS LETTERS B, 1991, 260 (1-2) :81-86
[7]   DEFORMATION THEORY AND QUANTIZATION .2. PHYSICAL APPLICATIONS [J].
BAYEN, F ;
FLATO, M ;
FRONSDAL, C ;
LICHNEROWICZ, A ;
STERNHEIMER, D .
ANNALS OF PHYSICS, 1978, 111 (01) :111-151
[8]  
DAZORD P, 1991, SYMPLECTIC GEOMETRY
[9]  
Drinfeld V.G., 1983, SOVIET MATH DOKL, V27, P68
[10]  
DRINFELD VG, 1986, P INT C MATH BERKELE, V1