IMPROVED BOUNDS ON WEAK EPSILON-NETS FOR CONVEX-SETS

被引:31
作者
CHAZELLE, B
EDELSBRUNNER, H
GRIGNI, M
GUIBAS, L
SHARIR, M
WELZL, E
机构
[1] UNIV ILLINOIS,DEPT COMP SCI,URBANA,IL 61801
[2] MIT,COMP SCI LAB,DEC SYST RES CTR,CAMBRIDGE,MA 02139
[3] STANFORD UNIV,DEPT COMP SCI,STANFORD,CA 94305
[4] TEL AVIV UNIV,SCH MATH SCI,IL-69978 TEL AVIV,ISRAEL
[5] NYU,COURANT INST MATH SCI,NEW YORK,NY 10012
[6] FREE UNIV BERLIN,INST INFORMAT,D-14195 BERLIN,GERMANY
关键词
D O I
10.1007/BF02574025
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let S be a set of n points in R(d). A set W is a weak epsilon-net for (convex ranges of) S if, for any T subset-or-equal-to S containing epsilonn points, the convex hull of T intersects W. We show the existence of weak epsilon-nets of size O((1/epsilon(d)) log(beta(d))(1/epsilon)), where beta2 = 0, beta3 = 1, and beta(d) almost-equal-to 0.149 . 2(d-1)(d - 1)!, improving a previous bound of Alon et al. Such a net can be computed effectively. We also consider two special cases: when S is a planar point set in convex position, we prove the existence of a net of size O((1/epsilon) log1.6(1/epsilon)). In the case where S consists of the vertices of a regular polygon, we use an argument from hyperbolic geometry to exhibit an optimal net of size O(1/epsilon), which improves a previous bound of Capoyleas.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 16 条
[1]   PIERCING CONVEX-SETS AND THE HADWIGER-DEBRUNNER (P, Q)-PROBLEM [J].
ALON, N ;
KLEITMAN, DJ .
ADVANCES IN MATHEMATICS, 1992, 96 (01) :103-112
[2]  
ALON N, 1992, COMBIN PROBAB COMPUT, V3, P189
[3]  
[Anonymous], 1987, EATCS MONOGRAPHS THE
[4]   POINTS AND TRIANGLES IN THE PLANE AND HALVING PLANES IN SPACE [J].
ARONOV, B ;
CHAZELLE, B ;
EDELSBRUNNER, H ;
GUIBAS, LJ ;
SHARIR, M ;
WENGER, R .
DISCRETE & COMPUTATIONAL GEOMETRY, 1991, 6 (05) :435-442
[5]  
Berger M., 1987, GEOMETRY, VII
[6]  
CAPOYLEAS V, 1992, UNPUB ALMOST LINEAR
[7]  
CHAZELLE B, 1990, 6TH P ANN S COMP GEO, P116
[8]  
COXETER H. S. M., 1942, NONEUCLIDEAN GEOMETR
[9]  
EPSTEIN DBA, 1984, LONDON MATH SOC LECT, V111
[10]  
Fenchel W., 1989, ELEMENTARY GEOMETRY, V11