TRIVALENT LANTHANIDE CHALCOGENOLATES - SYNTHESIS, STRUCTURE, AND THERMOLYSIS CHEMISTRY

被引:60
作者
LEE, J [1 ]
BREWER, M [1 ]
BERARDINI, M [1 ]
BRENNAN, JG [1 ]
机构
[1] RUTGERS STATE UNIV,DEPT CHEM,PISCATAWAY,NJ 08855
关键词
D O I
10.1021/ic00116a013
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Lanthanide-mercury amalgams react with diphenyl diselenide to form tris(benzeneselenolates) that can be isolated as the crystalline pyridine coordination complexes (pyridine)(3)Ln(SePh)(3) (Ln = Ho (1), Tm (2), Yb (3)). The structure of 2 was established by low temperature single crystal X-ray diffraction. The complex is dimeric in the solid state, with 7-coordinate metal centers connected by a pair of mu(2)-(benzeneselenolate) ligands. Thermal decomposition of the selenolates gives a variety of solid state metal selenides: 1 gives HoSe, HoSe2, and Ph(2)Se; 2 gives Tm2Se3 and Ph(2)Se; 3 gives Yb2Se3 and Ph(2)Se. Trivalent thiolates can also be prepared by this amalgam reaction. For comparison, the structure of Yb(SPh)(3)(pyridine)(3) (4) was also determined-4 is a monomeric mer-octahedral compound with inequivalent Yb-S bonds. Both 3 and 4 have an intense visible chalcogen-to-ytterbium charge transfer absorption band. Crystal data (Mo K alpha, 153(2) K) are as follows. 2: Triclinic space group <P(1)over bar>, a = 10.435(2) Angstrom, b = 12.748(2) Angstrom, c = 14.453(2) Angstrom, alpha = 69.85(2)degrees, beta = 80.71(2)degrees, and gamma = 69.03(2)degrees. 4: Triclinic space group <P(1)over bar>, a = 9.836(10) Angstrom, b = 11.304(14) Angstrom, c = 16.202(11) Angstrom, alpha = 80.70 degrees, beta = 77.91(7)degrees, and gamma = 68.34(9)degrees.
引用
收藏
页码:3215 / 3219
页数:5
相关论文
共 68 条
  • [11] Zalkin A., Berg D.J., Acta Crystallogr., 44 C, pp. 1488-1489, (1988)
  • [12] Evans W., Grate J.W., Bloom I., Hunter W.E., Atwood J.L., J Am. Chem. Soc., 107, pp. 405-409, (1985)
  • [13] Evans W., Rabe G., Ziller J., Doedens R., Inorg. Chem., 33, pp. 2719-2726, (1994)
  • [14] Welder M., Noltemeyer M., Pieper U., Schmidt H., Stalke D., Edelmann F., Angew. Chem., Int. Ed. Engl., 29, (1990)
  • [15] Strzelecki A.R., Timinski P.A., Hesel B.A., Bianconi P.A., J. Am. Chem. Soc., 114, pp. 3159-3160, (1992)
  • [16] Cary D.R., Arnold J., J. Am. Chem. Soc., 115, pp. 2520-2521, (1993)
  • [17] Berardini M., Emge T., Brennan J.G., J. Chem. Soc. Chem. Comm, pp. 1537-1538, (1993)
  • [18] Berardini M., Emge T., Brennan J.G., J. Am. Chem. Soc., 115, pp. 8501-8502, (1993)
  • [19] Khasnis D.V., Lee J., Brewer M., Emge T.J., Brennan J.G., J. Am. Chem. Soc., 116, pp. 7129-7133, (1994)
  • [20] Brewer M., Khasnis D., Buretea M., Berardini M., Emge T.J., Brennan J.G., Inorg. Chem., 33, pp. 2743-2747, (1994)