TRIVALENT LANTHANIDE CHALCOGENOLATES - SYNTHESIS, STRUCTURE, AND THERMOLYSIS CHEMISTRY

被引:60
作者
LEE, J [1 ]
BREWER, M [1 ]
BERARDINI, M [1 ]
BRENNAN, JG [1 ]
机构
[1] RUTGERS STATE UNIV,DEPT CHEM,PISCATAWAY,NJ 08855
关键词
D O I
10.1021/ic00116a013
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Lanthanide-mercury amalgams react with diphenyl diselenide to form tris(benzeneselenolates) that can be isolated as the crystalline pyridine coordination complexes (pyridine)(3)Ln(SePh)(3) (Ln = Ho (1), Tm (2), Yb (3)). The structure of 2 was established by low temperature single crystal X-ray diffraction. The complex is dimeric in the solid state, with 7-coordinate metal centers connected by a pair of mu(2)-(benzeneselenolate) ligands. Thermal decomposition of the selenolates gives a variety of solid state metal selenides: 1 gives HoSe, HoSe2, and Ph(2)Se; 2 gives Tm2Se3 and Ph(2)Se; 3 gives Yb2Se3 and Ph(2)Se. Trivalent thiolates can also be prepared by this amalgam reaction. For comparison, the structure of Yb(SPh)(3)(pyridine)(3) (4) was also determined-4 is a monomeric mer-octahedral compound with inequivalent Yb-S bonds. Both 3 and 4 have an intense visible chalcogen-to-ytterbium charge transfer absorption band. Crystal data (Mo K alpha, 153(2) K) are as follows. 2: Triclinic space group <P(1)over bar>, a = 10.435(2) Angstrom, b = 12.748(2) Angstrom, c = 14.453(2) Angstrom, alpha = 69.85(2)degrees, beta = 80.71(2)degrees, and gamma = 69.03(2)degrees. 4: Triclinic space group <P(1)over bar>, a = 9.836(10) Angstrom, b = 11.304(14) Angstrom, c = 16.202(11) Angstrom, alpha = 80.70 degrees, beta = 77.91(7)degrees, and gamma = 68.34(9)degrees.
引用
收藏
页码:3215 / 3219
页数:5
相关论文
共 68 条
  • [21] Carey D.R., Arnold J., Inorg. Chem., 33, (1994)
  • [22] Mashima K., Nakayama Y., Kanehisa N., Kai Y., Nakamura A., J. Chem. Soc, Chem. Commun., pp. 1847-1848, (1993)
  • [23] Strzelecki A.R., Likar C., Hesel B.A., Utz T., Lin M.C., Bianconi P.A., Inorg. Chem., 33, (1994)
  • [24] Mashima K., Nakayama Y., Fukumoto H., Kanehisa N., Kai Y., Nakamura A., J. Chem. Soc, Chem. Commun., pp. 2523-2524, (1994)
  • [25] Tatsumi K., Amemiya T., Kawaguchi H., Tani K., J. Chem. Soc, Chem. Commun., pp. 773-774, (1993)
  • [26] Cetinkaya B., Hitchcock P.B., Lappert M.F., Smith R.G., J. Chem. Soc, Chem. Commun., pp. 932-933, (1992)
  • [27] Cary D., Ball G., Arnold J., J Am. Chem. Soc., 117, (1995)
  • [28] Pomrenke G.S., Klein P.B., Langer D.W., Rare Earth Doped Semiconductors, (1993)
  • [29] Singer K.E., Rutter P., Praker A.R., Wright A.C., Appl. Phys. Lett., 64, pp. 707-709, (1994)
  • [30] Swiatek K., Godlewski M., Niinisto L., Leskela M., J. Appl. Phys., 74, pp. 3442-3446, (1993)