SEMICONDUCTORS, FERMI STATISTICS AND MULTIDIMENSIONAL CANTOR SETS

被引:6
作者
ELNASCHIE, MS
机构
关键词
D O I
10.1016/0960-0779(93)90032-V
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The note discusses classical, Bosonic and Fermionic behaviour of Cantor sets at ergodic criticality and suggests possible connections to mathematical models of semiconductors such as the Harper equation.
引用
收藏
页码:481 / 488
页数:8
相关论文
共 11 条
[1]   Multi-dimensional cantor sets in classical and quantum mechanics [J].
El Naschie, M.S. .
Chaos, solitons and fractals, 1992, 2 (02) :211-220
[2]   STATISTICAL-MECHANICS OF MULTIDIMENSIONAL CANTOR SETS, GODEL THEOREM AND QUANTUM SPACETIME [J].
ELNASCHIE, MS .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1993, 330 (01) :199-211
[3]   MATHEMATICAL-MODEL FOR CHAOS AND ERGODIC CRITICALITY IN 4 DIMENSIONS [J].
ELNASCHIE, MS .
MATHEMATICAL AND COMPUTER MODELLING, 1991, 15 (12) :77-80
[4]   ON CERTAIN INFINITE-DIMENSIONAL CANTOR SETS AND THE SCHRODINGER WAVE [J].
ELNASCHIE, MS .
CHAOS SOLITONS & FRACTALS, 1993, 3 (01) :89-98
[5]   INTERNAL CANTOR DISTANCE AND ENTROPY OF MULTIDIMENSIONAL PEANO-HILBERT SPACES [J].
ELNASCHIE, MS .
CHAOS SOLITONS & FRACTALS, 1993, 3 (03) :361-368
[6]  
ELNASCHIE MS, 1993, CHAOS SOLITON FRACT, V17, P47
[7]  
FINKELSTEIN D, 1973, PHYSICISTS CONCEPTIO, P709
[8]   SINGLE BAND MOTION OF CONDUCTION ELECTRONS IN A UNIFORM MAGNETIC FIELD [J].
HARPER, PG .
PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON SECTION A, 1955, 68 (10) :874-878
[9]  
KING G, 1992, NONLINEAR EQUATIONS, P257
[10]  
Peinke J., 1992, ENCOUNTER CHAOS