Geodesic Methods in Computer Vision and Graphics

被引:98
作者
Peyre, Gabriel [1 ]
Pechaud, Mickael [2 ]
Keriven, Renaud [3 ]
Cohen, Laurent D. [1 ]
机构
[1] Univ Paris 09, CNRS, Ceremade, UMR 7534, Pl Lattre de Tassigny, F-75775 Paris 16, France
[2] DI Ecole Normale Super, F-75005 Paris, France
[3] Ecole Ponts ParisTech, IMAGINE LIGM, F-77455 Marne La Vallee, France
来源
FOUNDATIONS AND TRENDS IN COMPUTER GRAPHICS AND VISION | 2009年 / 5卷 / 3-4期
关键词
D O I
10.1561/0600000029
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This monograph reviews both the theory and practice of the numerical computation of geodesic distances on Riemannian manifolds. The notion of Riemannian manifold allows one to define a local metric (a symmetric positive tensor field) that encodes the information about the problem one wishes to solve. This takes into account a local isotropic cost (whether some point should be avoided or not) and a local anisotropy (which direction should be preferred). Using this local tensor field, the geodesic distance is used to solve many problems of practical interest such as segmentation using geodesic balls and Voronoi regions, sampling points at regular geodesic distance or meshing a domain with geodesic Delaunay triangles. The shortest paths for this Riemannian distance, the so-called geodesics, are also important because they follow salient curvilinear structures in the domain. We show several applications of the numerical computation of geodesic distances and shortest paths to problems in surface and shape processing, in particular segmentation, sampling, meshing and comparison of shapes. All the figures from this review paper can be reproduced by following the Numerical Tours of Signal Processing.
引用
收藏
页码:197 / 397
页数:42
相关论文
共 297 条
[1]   Surface approximation and geometric partitions [J].
Agarwal, PK ;
Suri, S .
SIAM JOURNAL ON COMPUTING, 1998, 27 (04) :1016-1035
[2]   Anisotropic mesh refinement for finite element methods based on error reduction [J].
Aguilar, JC ;
Goodman, JB .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 193 (02) :497-515
[3]  
Akman V., 1987, UNOBSTRUCTED SHORTES
[4]   Size gradation control of anisotropic meshes [J].
Alauzet, F. .
FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2010, 46 (1-2) :181-202
[5]   Variational tetrahedral meshing [J].
Alliez, P ;
Cohen-Steiner, D ;
Yvinec, M ;
Desbrun, M .
ACM TRANSACTIONS ON GRAPHICS, 2005, 24 (03) :617-625
[6]  
Alliez P, 2003, SMI 2003: SHAPE MODELING INTERNATIONAL 2003, PROCEEDINGS, P49
[7]   Anisotropic polygonal remeshing [J].
Alliez, P ;
Cohen-Steiner, D ;
Devillers, O ;
Lévy, B ;
Desbrun, M .
ACM TRANSACTIONS ON GRAPHICS, 2003, 22 (03) :485-493
[8]  
Alliez P, 2008, MATH VIS, P53, DOI 10.1007/978-3-540-33265-7_2
[9]   The crust and the β-skeleton:: Combinatorial curve reconstruction [J].
Amenta, N ;
Bern, M ;
Eppstein, D .
GRAPHICAL MODELS AND IMAGE PROCESSING, 1998, 60 (02) :125-135
[10]  
[Anonymous], 2003, TOPICS OPTIMAL TRANS