INTEGRATED SPACE-TIME ADAPTIVE HP-REFINEMENT METHODS FOR PARABOLIC-SYSTEMS

被引:23
作者
FLAHERTY, JE
MOORE, PK
机构
[1] RENSSELAER POLYTECH INST,SCI COMPUTAT RES CTR,TROY,NY 12180
[2] WATERVLIET ARSENAL,BENET LABS,WATERVLIET,NY 12189
[3] TULANE UNIV,DEPT MATH,NEW ORLEANS,LA 70118
关键词
ADAPTIVE HP-REFINEMENT; FINITE ELEMENT METHODS; A POSTERIORI ERROR ESTIMATION; SINGLY IMPLICIT RUNGE-KUTTA METHODS; INTEGRATED SPACE-TIME ENRICHMENT;
D O I
10.1016/0168-9274(94)00059-P
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe adaptive integrated space-time hp-refinement algorithms for one-dimensional vector systems of parabolic partial differential equations. Solutions are calculated using Galerkin's method with a piecewise polynomial hierarchical basis in space and singly implicit Runge-Kutta (SIRK) methods in time. A posteriori estimates of local spatial and temporal discretization errors are used with a priori error estimates to control spatial and temporal enrichment. New techniques simplify spatial error estimation with high-order approximation; integrate spatial and temporal discretization and enrichment; and enable the selection of future meshes and acceptance of partial time steps. A base hp-refinement strategy and several variants are developed and compared using a number of linear and nonlinear examples.
引用
收藏
页码:317 / 341
页数:25
相关论文
共 29 条
[1]   A MOVING-MESH FINITE-ELEMENT METHOD WITH LOCAL REFINEMENT FOR PARABOLIC PARTIAL-DIFFERENTIAL EQUATIONS [J].
ADJERID, S ;
FLAHERTY, JE .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1986, 55 (1-2) :3-26
[2]   HIGH-ORDER ADAPTIVE METHODS FOR PARABOLIC-SYSTEMS [J].
ADJERID, S ;
FLAHERTY, JE ;
MOORE, PK ;
WANG, YJ .
PHYSICA D, 1992, 60 (1-4) :94-111
[3]  
Adjerid S., 1991, 911 RENSS POL I DEP
[4]  
Bank RE, 1983, ADAPTIVE COMPUTATION, P74
[5]   THE FINITE-ELEMENT METHOD FOR PARABOLIC EQUATIONS .2. A POSTERIORI ERROR ESTIMATION AND ADAPTIVE APPROACH [J].
BIETERMAN, M ;
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1982, 40 (03) :373-406
[6]  
Brenan K. E., 1989, NUMERICAL SOLUTION I
[7]  
Burrage K., 1978, BIT (Nordisk Tidskrift for Informationsbehandling), V18, P22, DOI 10.1007/BF01947741
[8]  
BURRAGE K, 1980, BIT, V20, P327
[9]   TRANSFORMED IMPLICIT RUNGE-KUTTA METHOD [J].
BUTCHER, JC .
JOURNAL OF THE ACM, 1979, 26 (04) :731-738
[10]  
BUTCHER JC, 1992, COMMUNICATION