BI-HAMILTONIAN FORMULATION OF THE HENON HEILES SYSTEM AND ITS MULTIDIMENSIONAL EXTENSIONS

被引:33
作者
ANTONOWICZ, M [1 ]
RAUCHWOJCIECHOWSKI, S [1 ]
机构
[1] LINKOPING UNIV,DEPT MATH,S-58183 LINKOPING,SWEDEN
关键词
D O I
10.1016/0375-9601(92)90402-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove that a (slightly) generalized Henon-Heiles system is equivalent to a fifth order Hamiltonian evolution equation with a third order Hamiltonian operator. This equivalence makes it possible to use the machinery of restricted flows of soliton hierarchies in order to (a) find natural extensions of integrable cases of the Henon-Heiles system, and (b) determine (in the KdV case) a bi-Hamiltonian formulation for the (extended) Henon-Heiles system and prove its complete integrability.
引用
收藏
页码:167 / 172
页数:6
相关论文
共 11 条
[1]   CONSTRAINED FLOWS OF INTEGRABLE PDES AND BI-HAMILTONIAN STRUCTURE OF THE GARNIER SYSTEM [J].
ANTONOWICZ, M ;
RAUCHWOJCIECHOWSKI, S .
PHYSICS LETTERS A, 1990, 147 (8-9) :455-462
[2]   INTEGRABLE STATIONARY FLOWS - MIURA MAPS AND BI-HAMILTONIAN STRUCTURES [J].
ANTONOWICZ, M ;
FORDY, AP ;
WOJCIECHOWSKI, S .
PHYSICS LETTERS A, 1987, 124 (03) :143-150
[3]  
ANTONOWICZ M, LITHMATR9035 PREPR
[4]  
ANTONOWICZ M, IN PRESS J PHYS A
[5]   INTEGRABLE HAMILTONIAN-SYSTEMS AND THE PAINLEVE PROPERTY [J].
BOUNTIS, T ;
SEGUR, H ;
VIVALDI, F .
PHYSICAL REVIEW A, 1982, 25 (03) :1257-1264
[6]   ANALYTIC STRUCTURE OF THE HENON-HEILES HAMILTONIAN IN INTEGRABLE AND NON-INTEGRABLE REGIMES [J].
CHANG, YF ;
TABOR, M ;
WEISS, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1982, 23 (04) :531-538
[7]  
FORDY A, 1991, SOLITONS CHAOS, P159
[8]   THE HENON-HEILES SYSTEM REVISITED [J].
FORDY, AP .
PHYSICA D, 1991, 52 (2-3) :204-210
[9]   APPLICABILITY OF 3 INTEGRAL OF MOTION - SOME NUMERICAL EXPERIMENTS [J].
HENON, M ;
HEILES, C .
ASTRONOMICAL JOURNAL, 1964, 69 (01) :73-&
[10]  
Ostrogradsky M., 1850, MEMOIRS ACAD ST PETE, V6, P385