FUNCTIONAL LAWS OF THE ITERATED LOGARITHM FOR THE INCREMENTS OF EMPIRICAL AND QUANTILE PROCESSES

被引:61
作者
DEHEUVELS, P [1 ]
MASON, DM [1 ]
机构
[1] UNIV DELAWARE, DEPT MATH SCI, NEWARK, DE 19716 USA
关键词
FUNCTIONAL LIMIT LAWS; LAWS OF THE ITERATED LOGARITHM; EMPIRICAL PROCESSES; QUANTILE PROCESSES; ORDER STATISTICS; NONPARAMETRIC ESTIMATION; DENSITY ESTIMATION; NEAREST NEIGHBOR ESTIMATES;
D O I
10.1214/aop/1176989691
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let {alpha(n)(t), 0 less-than-or-equal-to t less-than-or-equal-to 1} and {beta(n)(t), 0 less-than-or-equal-to t less-than-or-equal-to 1} be the empirical and quantile processes generated by the first n observations from an i.i.d. sequence of uniformly distributed random variables on (0, 1). Let 0 < alpha(n) < 1 be a sequence of constants such that alpha(n) --> 0 as n --> infinity. We investigate the strong limiting behavior as n --> infinity of the increment functions {alpha(n)(t + alpha(n)s) - alpha(n)(t), 0 less-than-or-equal-to s less-than-or-equal-to 1} and {beta(n)(t + alpha(n)s) - beta(n)(t), 0 less-than-or-equal-to s less-than-or-equal-to 1}, where 0 less-than-or-equal-to t less-than-or-equal-to 1 - alpha(n). Under suitable regularity assumptions imposed upon alpha(n), we prove functional laws of the iterated logarithm for these increment functions and discuss statistical applications in the field of nonparametric estimation.
引用
收藏
页码:1248 / 1287
页数:40
相关论文
共 46 条
[11]   NECESSARY AND SUFFICIENT CONDITIONS FOR THE POINTWISE CONVERGENCE OF NEAREST NEIGHBOR REGRESSION FUNCTION ESTIMATES [J].
DEVROYE, L .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1982, 61 (04) :467-481
[12]   LAWS OF THE ITERATED LOGARITHM FOR ORDER-STATISTICS OF UNIFORM SPACINGS [J].
DEVROYE, L .
ANNALS OF PROBABILITY, 1981, 9 (05) :860-867
[13]   A LOG LOG LAW FOR MAXIMAL UNIFORM SPACINGS [J].
DEVROYE, L .
ANNALS OF PROBABILITY, 1982, 10 (03) :863-868
[14]  
Devroye L., 1979, UTILITAS MATHEMATICA, V15, P113
[15]  
Devroye L., 1987, COURSE DENSITY ESTIM
[16]   L1 CONVERGENCE OF KERNEL DENSITY ESTIMATES [J].
DEVROYE, LP ;
WAGNER, TJ .
ANNALS OF STATISTICS, 1979, 7 (05) :1136-1139
[17]   STRONG LIMIT-THEOREMS FOR WEIGHTED QUANTILE PROCESSES [J].
EINMAHL, JHJ ;
MASON, DM .
ANNALS OF PROBABILITY, 1988, 16 (04) :1623-1643
[18]  
FIX E, 1951, USAF4 SCH AV MED TEC
[19]   ON THE LAW OF THE LOGARITHM FOR DENSITY ESTIMATORS [J].
HALL, P .
STATISTICS & PROBABILITY LETTERS, 1990, 9 (03) :237-240
[20]  
HOGNAS G, 1977, MATH SCAND, V41, P175