OSCILLATING SINGULARITIES IN LOCALLY SELF-SIMILAR FUNCTIONS

被引:37
作者
ARNEODO, A [1 ]
BACRY, E [1 ]
MUZY, JF [1 ]
机构
[1] UNIV PARIS 07,UFR MATH,F-75251 PARIS 05,FRANCE
关键词
D O I
10.1103/PhysRevLett.74.4823
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Singularities induced by oscillating behavior are analyzed using the wavelet transform. We define two local exponents which allow us to characterize both the singularity strength (Hölder exponent) and the instantaneous frequency of the oscillations. Such oscillating singularities are shown to appear generically in local self-similar functions which are invariant under a nonhyperbolic mapping. We illustrate our results on both isolated singularities and nonisolated singularities appearing in fractal signals generated by nonhyperbolic iterative function systems. © 1995 The American Physical Society.
引用
收藏
页码:4823 / 4826
页数:4
相关论文
共 29 条
[1]   SOLVING THE INVERSE FRACTAL PROBLEM FROM WAVELET ANALYSIS [J].
ARNEODO, A ;
BACRY, E ;
MUZY, JF .
EUROPHYSICS LETTERS, 1994, 25 (07) :479-484
[2]   PHASE-TRANSITIONS ON STRANGE IRRATIONAL SETS [J].
ARTUSO, R ;
CVITANOVIC, P ;
KENNY, BG .
PHYSICAL REVIEW A, 1989, 39 (01) :268-281
[3]   SINGULARITY SPECTRUM OF FRACTAL SIGNALS FROM WAVELET ANALYSIS - EXACT RESULTS [J].
BACRY, E ;
MUZY, JF ;
ARNEODO, A .
JOURNAL OF STATISTICAL PHYSICS, 1993, 70 (3-4) :635-674
[4]   CONSTRUCTION OF MULTIFRACTAL MEASURES IN DYNAMIC-SYSTEMS FROM THEIR INVARIANCE PROPERTIES [J].
BESSIS, D ;
MANTICA, G .
PHYSICAL REVIEW LETTERS, 1991, 66 (23) :2939-2942
[5]  
BONY JM, 1987, PROBABILISTIC METHOD, P11
[6]   THE DIMENSION SPECTRUM OF SOME DYNAMIC-SYSTEMS [J].
COLLET, P ;
LEBOWITZ, JL ;
PORZIO, A .
JOURNAL OF STATISTICAL PHYSICS, 1987, 47 (5-6) :609-644
[7]  
Combes Jean Michel, 1989, WAVELETS
[8]  
Daubechies I., 1992, 10 LECT WAVELETS, DOI 10.1137/1.9781611970104
[9]   ASYMPTOTIC WAVELET AND GABOR ANALYSIS - EXTRACTION OF INSTANTANEOUS FREQUENCIES [J].
DELPRAT, N ;
ESCUDIE, B ;
GUILLEMAIN, P ;
KRONLANDMARTINET, R ;
TCHAMITCHIAN, P ;
TORRESANI, B .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (02) :644-664
[10]   ERGODIC-THEORY OF CHAOS AND STRANGE ATTRACTORS [J].
ECKMANN, JP ;
RUELLE, D .
REVIEWS OF MODERN PHYSICS, 1985, 57 (03) :617-656