APPLICATION OF THE EIGENVALUE MOMENT METHOD TO IMPORTANT ONE-DIMENSIONAL QUANTUM-SYSTEMS

被引:13
作者
HANDY, CR
HAYES, H
STEPHENS, DV
JOSHUA, J
SUMMEROUR, S
机构
[1] CLARK ATLANTA UNIV,CTR THEORET STUDIES PHYS SYST,ATLANTA,GA 30314
[2] SPELMAN COLL,ATLANTA,GA 30314
[3] MOREHOUSE COLL,DEPT PHYS,ATLANTA,GA 30314
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1993年 / 26卷 / 11期
关键词
D O I
10.1088/0305-4470/26/11/013
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the effectiveness of the eigenvalue moment method as applied to various one-dimensional quantum problems which have appeared in the literature. Of particular interest are the radial potential problems (including angular momentum effects) -Ze2/(r + beta) and r2 + lambdar2/(1 + gr2) studied by De Meyer and Vanden Berghe (and more recently by Femandez), and Witwit, respectively. We also examine the potentials 1/2x2 +/- gx4/(1 + alphagx2), exhaustively studied by Auberson and Boissiere. Finally, we examine the one-dimensional regulated Bohr atom with potential -Z/(Absolute value of x + alpha), well studied by Loudon, and Haines and Roberts.
引用
收藏
页码:2635 / 2649
页数:15
相关论文
共 21 条
[1]  
AUBERSON G, 1983, NUOVO CIM B, V75, P105
[2]  
Chvatal V., 1983, LINEAR PROGRAMMING
[3]  
DEMEYER H, 1990, J PHYS A-MATH GEN, V23, P1323, DOI 10.1088/0305-4470/23/7/034
[4]   PERTURBATIVE-VARIATIONAL CALCULATIONS IN 2-WELL ANHARMONIC-OSCILLATORS [J].
DESAAVEDRA, FA ;
BUENDIA, E .
PHYSICAL REVIEW A, 1990, 42 (09) :5073-5078
[5]  
DESAAVEDRA FA, 1992, PHYS REV A, V46, P1703, DOI 10.1103/PhysRevA.46.1703
[6]   ANALYTICAL BOUND EIGENSTATES AND EIGENVALUES OF A TRUNCATED COULOMB POTENTIAL [J].
FERNANDEZ, FM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (06) :1351-1353
[7]   ONE-DIMENSIONAL HYDROGEN ATOM [J].
HAINES, LK ;
ROBERTS, DH .
AMERICAN JOURNAL OF PHYSICS, 1969, 37 (11) :1145-&
[8]   DYNAMIC-SYSTEM FORMULATION OF THE EIGENVALUE MOMENT METHOD [J].
HANDY, CR ;
GIRAUD, BG ;
BESSIS, D .
PHYSICAL REVIEW A, 1991, 44 (03) :1505-1515
[9]   APPLICATION OF THE EIGENVALUE MOMENT METHOD TO THE QUARTIC ANHARMONIC DOUBLE-WELL OSCILLATOR [J].
HANDY, CR .
PHYSICAL REVIEW A, 1992, 46 (03) :1663-1666
[10]   GENERATING QUANTUM ENERGY BOUNDS BY THE MOMENT METHOD - A LINEAR-PROGRAMMING APPROACH [J].
HANDY, CR ;
BESSIS, D ;
MORLEY, TD .
PHYSICAL REVIEW A, 1988, 37 (12) :4557-4569