OPTIMAL CONTROLLERS AND OUTPUT-FEEDBACK STABILIZATION

被引:12
作者
TSINIAS, J [1 ]
机构
[1] NATL TECH UNIV ATHENS,DEPT MATH,GR-15773 ATHENS,GREECE
关键词
Lyapunov functions; Nonlinear systems; optimal;
D O I
10.1016/0167-6911(90)90100-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper the output feedback stabilizability problem is explored in terms of control Lyapunov functions. Sufficient conditions for stabilization are provided for a certain class of systems by means of output feedback stabilizers that can be obtained from an optimization problem. Our main results extends those developed in [31] and generalize a theorem due to Sontag [23]. © 1990.
引用
收藏
页码:277 / 284
页数:8
相关论文
共 37 条
[1]   STABILIZATION OF A CLASS OF NONLINEAR-SYSTEMS BY A SMOOTH FEEDBACK-CONTROL [J].
AEYELS, D .
SYSTEMS & CONTROL LETTERS, 1985, 5 (05) :289-294
[2]   GLOBAL STABILIZABILITY OF HOMOGENEOUS VECTOR-FIELDS OF ODD DEGREE [J].
ANDREINI, A ;
BACCIOTTI, A ;
STEFANI, G .
SYSTEMS & CONTROL LETTERS, 1988, 10 (04) :251-256
[3]   STABILIZATION WITH RELAXED CONTROLS [J].
ARTSTEIN, Z .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1983, 7 (11) :1163-1173
[4]   Stabilizability of Finite- and Infinite-Dimensional Bilinear Systems [J].
Banks, S. P. .
IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 1986, 3 (04) :255-271
[5]   FEEDBACK STABILIZATION OF PLANAR NONLINEAR-SYSTEMS [J].
BOOTHBY, WM ;
MARINO, R .
SYSTEMS & CONTROL LETTERS, 1989, 12 (01) :87-92
[6]  
Brockett R. W., 1983, DIFFERENTIAL GEOMETR, V27, P181
[7]  
BYRNES C, 1982, 21ST P IEEE C DEC CO, P1320
[8]   LOCAL STABILIZATION OF MINIMUM-PHASE NONLINEAR-SYSTEMS [J].
BYRNES, CI ;
ISIDORI, A .
SYSTEMS & CONTROL LETTERS, 1988, 11 (01) :9-17
[9]   NEW RESULTS AND EXAMPLES IN NONLINEAR FEEDBACK STABILIZATION [J].
BYRNES, CI ;
ISIDORI, A .
SYSTEMS & CONTROL LETTERS, 1989, 12 (05) :437-442
[10]   SPACECRAFT ATTITUDE-CONTROL AND STABILIZATION - APPLICATIONS OF GEOMETRIC CONTROL-THEORY TO RIGID BODY MODELS [J].
CROUCH, PE .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1984, 29 (04) :321-331