What is the role of chaotic scattering in irreversible processes?

被引:52
作者
Gaspard, Pierre [1 ]
机构
[1] Univ Libre Bruxelles, Ctr Nonlinear Phenomena & Complex Syst, B-1050 Brussels, Belgium
关键词
D O I
10.1063/1.165950
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study kinetic properties of simple mechanical models of deterministic diffusion like the scattering of a point particle in a billiard of Lorentz type and the multibaker area-preserving map. We show how dynamical chaos and, in particular, chaotic scattering are related to the transport property of diffusion. Moreover, we show that the Liouvillian dynamics of the multibaker map can be decomposed into the eigenmodes of diffusive relaxation associated with the Ruelle resonances of the Perron-Frobenius operator.
引用
收藏
页码:427 / 442
页数:16
相关论文
共 49 条
[1]   GENERALIZED SPECTRAL DECOMPOSITION OF THE BETA-ADIC BAKERS TRANSFORMATION AND INTRINSIC IRREVERSIBILITY [J].
ANTONIOU, I ;
TASAKI, S .
PHYSICA A, 1992, 190 (3-4) :303-329
[2]   SPECTRAL DECOMPOSITION OF THE RENYI MAP [J].
ANTONIOU, I ;
TASAKI, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (01) :73-94
[3]  
Arnold V.I., 1968, ERGODIC PROBLEMS CLA
[4]   RECYCLING OF STRANGE SETS .1. CYCLE EXPANSIONS [J].
ARTUSO, R ;
AURELL, E ;
CVITANOVIC, P .
NONLINEARITY, 1990, 3 (02) :325-359
[5]   RECYCLING OF STRANGE SETS .2. APPLICATIONS [J].
ARTUSO, R ;
AURELL, E ;
CVITANOVIC, P .
NONLINEARITY, 1990, 3 (02) :361-386
[6]  
Baras F, UNPUB
[7]   GENERALIZED DIMENSIONS, ENTROPIES, AND LIAPUNOV EXPONENTS FROM THE PRESSURE FUNCTION FOR STRANGE SETS [J].
BESSIS, D ;
PALADIN, G ;
TURCHETTI, G ;
VAIENTI, S .
JOURNAL OF STATISTICAL PHYSICS, 1988, 51 (1-2) :109-134
[8]  
Billingsley P., 1965, ERGODIC THEORY INFOR
[9]   BIFURCATION TO CHAOTIC SCATTERING [J].
BLEHER, S ;
GREBOGI, C ;
OTT, E .
PHYSICA D, 1990, 46 (01) :87-121
[10]  
Bohm A., 1986, QUANTUM MECH FDN APP, V3rd